Malmö University Publications
Change search
Refine search result
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abid, Muhammad Adil
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Amouzad Mahdiraji, Saeid
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Holmgren, Johan
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Mihailescu, Radu-Casian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Petersson, Jesper
    Department of Health Care Management, Region Skåne, 21428 Malmö, Sweden; Department of Neurology, Lund University, 22242 Malmö, Sweden.
    A Genetic Algorithm for Optimizing Mobile Stroke Unit Deployment2023In: Procedia Computer Science, ISSN 1877-0509, Vol. 225, p. 3536-3545Article in journal (Refereed)
    Abstract [en]

    A mobile stroke unit (MSU) is an advanced ambulance equipped with specialized technology and trained healthcare personnel to provide on-site diagnosis and treatment for stroke patients. Providing efficient access to healthcare (in a viable way) requires optimizing the placement of MSUs. In this study, we propose a time-efficient method based on a genetic algorithm (GA) to find the most suitable ambulance sites for the placement of MSUs (given the number of MSUs and a set of potential sites). We designed an efficient encoding scheme for the input data (the number of MSUs and potential sites) and developed custom selection, crossover, and mutation operators that are tailored according to the characteristics of the MSU allocation problem. We present a case study on the Southern Healthcare Region in Sweden to demonstrate the generality and robustness of our proposed GA method. Particularly, we demonstrate our method's flexibility and adaptability through a series of experiments across multiple settings. For the considered scenario, our proposed method outperforms the exhaustive search method by finding the best locations within 0.16, 1.44, and 10.09 minutes in the deployment of three MSUs, four MSUs, and five MSUs, resulting in 8.75x, 16.36x, and 24.77x faster performance, respectively. Furthermore, we validate the method's robustness by iterating GA multiple times and reporting its average fitness score (performance convergence). In addition, we show the effectiveness of our method by evaluating key hyperparameters, that is, population size, mutation rate, and the number of generations.

    Download full text (pdf)
    fulltext
  • 2.
    Alassadi, Abdulrahman
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Holmgren, Johan
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    An Agent-based Model for Simulating Travel Patterns of Stroke Patients2021In: DIGITAL 2021: Advances on Societal Digital Transformation / [ed] Wanwan Li; Manuela Popescu, ThinkMind , 2021, p. 11-16Conference paper (Refereed)
    Abstract [en]

    For patients suffering from a stroke, the time until the start of the treatment is a crucial factor with respect to the recovery from this condition. In rural regions, transporting the patient to an adequate hospital typically delays the diagnosis and treatment of a stroke, worsening its prognosis. To reduce the time to treatment, different policies can be applied. This includes, for instance, the use of Mobile Stroke Units (MSUs), which are specialized ambulances that can provide adequate care closer to where the stroke occurred. To simulate and assess different stroke logistics policies, such as the use of MSUs, a major challenge is the realistic modeling of the patients. In this article, we present an approach for generating an artificial population of stroke patients to simulate when and where strokes occur. We apply the model to the region of Skåne, where we investigated the relevance of travel behavior on the spatial distribution of stroke patients.

    Download full text (pdf)
    fulltext
  • 3.
    Alassadi, Abdulrahman
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Holmgren, Johan
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Population Generation for Agent-based Simulations of Stroke Logistics Policies: A Case Study of Stroke Patient Mobility2022In: International Journal On Advances in Life Sciences, ISSN 1942-2660, E-ISSN 1942-2660, Vol. 14, no 1&2, p. 12-21Article in journal (Refereed)
    Abstract [en]

    For acute medical conditions, for instance strokes, the time until the start of the treatment is a crucial factor to prevent a fatal outcome and to facilitate the recovery of the patient’s health. Hence, the planning and optimization of patient logistics is of high importance to ensure prompt access to healthcare facilities in case of medical emergencies. Computer simulation can be used to investigate the effects of different stroke logistics policies under realistic conditions without jeopardizing the health of the patients. The success of such policies greatly depends on the behavior of the individuals. Hence, agent-based simulation is particularly well-suited as it imitates human behavior and decision-making by means of artificial intelligence, which allows for investigating the effects of policies under different conditions. Agent-based simulation requires the generation of a realistic synthetic population, that adequately represents the population that shall be investigated such that reliable conclusions can be drawn from the simulation results. In this article, we propose a process for generating an artificial population of potential stroke patients that can be used to investigate the effects of stroke logistics policies using agent-based simulation. To illustrate how this process can be applied, we present the results from a case study in the region of Skåne in southern Sweden, where a synthetic population of stroke patients with realistic mobility behavior is simulated. 

    Download full text (pdf)
    fulltext
  • 4.
    Amouzad Mahdiraji, Saeid
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Abid, Muhammad Adil
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Holmgren, Johan
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Mihailescu, Radu-Casian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Petersson, Jesper
    Skåne University Hospital, Fritz Bauersgatan 5, 21428, Malmö, Sweden; Lund University, Entrégatan 7, 22242, Lund, Sweden.
    An Optimization Model for the Placement of Mobile Stroke Units2023In: Advanced Research in Technologies, Information, Innovation and Sustainability: Third International Conference, ARTIIS 2023, Madrid, Spain, October 18–20, 2023, Proceedings, Part I / [ed] Teresa Guarda; Filipe Portela; Jose Maria Diaz-Nafria, Springer, 2023, p. 297-310Conference paper (Refereed)
    Abstract [en]

    Mobile Stroke Units (MSUs) are specialized ambulances that can diagnose and treat stroke patients; hence, reducing the time to treatment for stroke patients. Optimal placement of MSUs in a geographic region enables to maximize access to treatment for stroke patients. We contribute a mathematical model to optimally place MSUs in a geographic region. The objective function of the model takes the tradeoff perspective, balancing between the efficiency and equity perspectives for the MSU placement. Solving the optimization problem enables to optimize the placement of MSUs for the chosen tradeoff between the efficiency and equity perspectives. We applied the model to the Blekinge and Kronoberg counties of Sweden to illustrate the applicability of our model. The experimental findings show both the correctness of the suggested model and the benefits of placing MSUs in the considered regions.

  • 5.
    Ashouri, Majid
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Spalazzese, Romina
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Edge Computing Simulators for IoT System Design: An Analysis of Qualities and Metrics2019In: Future Internet, E-ISSN 1999-5903, Vol. 11, no 11, p. 235-246Article in journal (Refereed)
    Abstract [en]

    The deployment of Internet of Things (IoT) applications is complex since many quality characteristics should be taken into account, for example, performance, reliability, and security. In this study, we investigate to what extent the current edge computing simulators support the analysis of qualities that are relevant to IoT architects who are designing an IoT system. We first identify the quality characteristics and metrics that can be evaluated through simulation. Then, we study the available simulators in order to assess which of the identified qualities they support. The results show that while several simulation tools for edge computing have been proposed, they focus on a few qualities, such as time behavior and resource utilization. Most of the identified qualities are not considered and we suggest future directions for further investigation to provide appropriate support for IoT architects.

    Download full text (pdf)
    fulltext
  • 6.
    Ashouri, Majid
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Spalazzese, Romina
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Svorobej, Sergej
    Analyzing Distributed Deep Neural Network Deployment on Edge and Cloud Nodes in IoT Systems2020In: IEEE International Conference on Edge Computing (EDGE), Virtual conference, October 18–24, 2020., 2020, p. 59-66Conference paper (Refereed)
    Abstract [en]

    For the efficient execution of Deep Neural Networks (DNN) in the Internet of Things, computation tasks can be distributed and deployed on edge nodes. In contrast to deploying all computation to the cloud, the use of Distributed DNN (DDNN) often results in a reduced amount of data that is sent through the network and thus might increase the overall performance of the system. However, finding an appropriate deployment scenario is often a complex task and requires considering several criteria. In this paper, we introduce a multi-criteria decision-making method based on the Analytical Hierarchy Process for the comparison and selection of deployment alternatives. We use the RECAP simulation framework to model and simulate DDNN deployments on different scales to provide a comprehensive assessment of deployments to system designers. In a case study, we apply the method to a smart city scenario where different distributions and deployments of a DNN are analyzed and compared.

  • 7.
    Belfrage, Michael
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Brown, Barry
    Department of Computer and Systems Sciences, Stockholm University.
    Danielsson, Henrik
    Department of Behavioural Sciences and Learning, Linköping University.
    Dignum, Virginia
    Department of Computing Science, Umeå University.
    Glöss, Mareike
    Digital Fututres Research Centre, KTH Royal Institute of Technology.
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Passero, Sergio
    Department of Culture and Society, Linköping University.
    Rahm, Lina
    Division of History of Science, Technology and Environment, KTH Royal Institute of Technology.
    Sarayeva, Tatyana
    Department of Computing Science, Umeå University.
    Wiberg, Mikael
    Department of Informatics, Umeå University.
    WASP-HS. Community Reference Meeting: Sustainability and Smart Cities2022Report (Other academic)
    Download full text (pdf)
    fulltext
  • 8.
    Belfrage, Michael
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Making Sense of Collaborative Challenges inAgent-based Modelling for Policy-Making2022In: Proceedings of the 2nd Workshop on Agent-based Modeling and Policy-Making (AMPM 2022) / [ed] Giovanni Sileno; Christoph Becker; Nicola Lettieri, CEUR , 2022Conference paper (Refereed)
    Download full text (pdf)
    fulltext
  • 9.
    Dignum, Frank
    et al.
    Umea Univ, Umea, Sweden..
    Dignum, Virginia
    Umea Univ, Umea, Sweden..
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Ghorbani, Amineh
    Delft Univ Technol, Delft, Netherlands..
    van der Hurk, Mijke
    Univ Utrecht, Utrecht, Netherlands..
    Jensen, Maarten
    Umea Univ, Umea, Sweden..
    Kammler, Christian
    Umea Univ, Umea, Sweden..
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Ludescher, Luis Gustavo
    Umea Univ, Umea, Sweden..
    Melchior, Alexander
    Univ Utrecht, Utrecht, Netherlands..
    Mellema, Rene
    Umea Univ, Umea, Sweden..
    Pastrav, Cezara
    Umea Univ, Umea, Sweden..
    Vanhee, Lois
    Univ Caen, Caen, France..
    Verhagen, Harko
    Stockholm Univ, Stockholm, Sweden..
    Analysing the Combined Health, Social and Economic Impacts of the Corovanvirus Pandemic Using Agent-Based Social Simulation2020In: Minds and Machines, ISSN 0924-6495, E-ISSN 1572-8641, Vol. 30, no 2, p. 177-194Article in journal (Refereed)
    Abstract [en]

    During the COVID-19 crisis there have been many difficult decisions governments and other decision makers had to make. E.g. do we go for a total lock down or keep schools open? How many people and which people should be tested? Although there are many good models from e.g. epidemiologists on the spread of the virus under certain conditions, these models do not directly translate into the interventions that can be taken by government. Neither can these models contribute to understand the economic and/or social consequences of the interventions. However, effective and sustainable solutions need to take into account this combination of factors. In this paper, we propose an agent-based social simulation tool, ASSOCC, that supports decision makers understand possible consequences of policy interventions, but exploring the combined social, health and economic consequences of these interventions.

    Download full text (pdf)
    fulltext
  • 10.
    Dytckov, Sergei
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Holmgren, Johan
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Persson, Jan A.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Modelling Commuting Activities for the Simulation of Demand Responsive Transport in Rural Areas2020In: Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems / [ed] Karsten Berns, Markus Helfert, Oleg Gusikhin, SciTePress, 2020, Vol. 1, p. 89-97Conference paper (Refereed)
    Abstract [en]

    For the provision of efficient and high-quality public transport services in rural areas with a low population density, the introduction of Demand Responsive Transport (DRT) services is reasonable. The optimal design of such services depends on various socio-demographical and environmental factors, which is why the use of simulation is feasible to support planning and decision-making processes. A key challenge for sound simulation results is the generation of realistic demand, i.e., requests for DRT journeys. In this paper, a method for modelling and simulating commuting activities is presented, which is based on statistical real-world data. It is applied to Sjöbo and Tomelilla, two rural municipalities in southern Sweden.

    Download full text (pdf)
    fulltext
  • 11.
    Dytckov, Sergei
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Holmgren, Johan
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Persson, Jan A.
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    An Individual-Based Simulation Approach to Demand Responsive Transport2021In: Intelligent Transport Systems, From Research and Development to the Market Uptake, Springer, 2021, p. 72-89Conference paper (Refereed)
    Abstract [en]

    This article demonstrates an approach to the simulation of Demand Responsive Transport (DRT) – a flexible transport mode that typically operates as a combination of taxi and bus modes. Travellers request individual trips and DRT is capable of adjusting its routes or schedule to the needs of travellers. It has been seen as a part of the public transport network, which has the potential to reduce operational costs of public transport services, to provide better service quality for population groups with limited mobility and to improve transport fairness. However, a DRT service needs to be thoroughly planned to target the intended user groups, attract a sufficient demand level and maintain reasonable operational costs. As the demand for DRT is dynamic and heterogeneous, it is difficult to simulate it with a macro approach. To address this problem, we develop and evaluate an individual-based simulation comprising models of traveller behaviour for both supply and demand sides. Travellers choose a trip alternative with a mode choice model and DRT vehicle routing utilises a model of travellers’ mode choice behaviour to optimise routes. This allows capturing supply-side operational costs and demand-side service quality for every individual, what allows for designing a personalised service that can prioritise needy groups of travellers improving transport fairness. By simulating different setups of DRT services, the simulator can be used as a decision support tool.

    Download full text (pdf)
    fulltext
  • 12.
    Dytckov, Sergei
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Persson, Jan A.
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Potential Benefits of Demand Responsive Transport in Rural Areas: A Simulation Study in Lolland, Denmark2022In: Sustainability, E-ISSN 2071-1050, Vol. 14, no 6, article id 3252Article in journal (Refereed)
    Abstract [en]

    In rural areas with low demand, demand responsive transport (DRT) can provide an alternative to the regular public transport bus lines, which are expensive to operate in such conditions. With simulation, we explore the potential effects of introducing a DRT service that replaces existing bus lines in Lolland municipality in Denmark, assuming that the existing demand remains unchanged. We set up the DRT service in such a way that its service quality (in terms of waiting time and in-vehicle time) is comparable to the replaced buses. The results show that a DRT service can be more cost efficient than regular buses and can produce significantly less CO2 emissions when the demand level is low. Additionally, we analyse the demand density at which regular buses become more cost efficient and explore how the target service quality of a DRT service can affect operational characteristics. Overall, we argue that DRT could be a more sustainable mode of public transport in low demand areas.

    Download full text (pdf)
    fulltext
  • 13.
    Frank, Dignum
    et al.
    Department of Computing Science, Umeå University, SE-901 87, Umeå, Sweden.
    Loïs, Vanhée
    Department of Computing Science, Umeå University, SE-901 87, Umeå, Sweden; GREYC, Université de Caen, 14000, Caen, France.
    Maarten, Jensen
    Department of Computing Science, Umeå University, SE-901 87, Umeå, Sweden.
    Christian, Kammler
    Department of Computing Science, Umeå University, SE-901 87, Umeå, Sweden.
    René, Mellema
    Department of Computing Science, Umeå University, SE-901 87, Umeå, Sweden.
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Păstrăv, Cezara
    Department of Computing Science, Umeå University, SE-901 87, Umeå, Sweden.
    van den Hurk, Mijke
    Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
    Melchior, Alexander
    Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands; Ministry of Economic Affairs and Climate Policy and Ministry of Agriculture, Nature and Food Quality, The Netherlands, Bezuidenhoutseweg 73, 2594 AC, Den Haag, The Netherlands.
    Ghorbani, Ahmine
    Faculty of Technology, Policy and Management, TU Delft, Jaffalaan 5, 2628 BX, Delft, The Netherlands.
    de Bruin, Bart
    Faculty of Technology, Policy and Management, TU Delft, Jaffalaan 5, 2628 BX, Delft, The Netherlands.
    Kreulen, Kurt
    Faculty of Technology, Policy and Management, TU Delft, Jaffalaan 5, 2628 BX, Delft, The Netherlands.
    Verhagen, Harko
    Department of Computer and Systems Sciences, Stockholm University, PO Box 7003, 16407, Kista, Sweden.
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Introduction2021In: Social Simulation for a Crisis: Results and Lessons from Simulating the COVID-19 Crisis / [ed] Frank Dignum, Cham: Springer, 2021, p. 3-13Chapter in book (Refereed)
    Abstract [en]

    The introduction of this book sets the stage of performing social simulations in a crisis. The contents of the book are based on the experience of creating a large scale and complex social simulation for the Covid-19 crisis. However, the contents are reaching much further than just this experience. We will show the general contribution that social simulations based on fundamental social-psychological principles can have in times of crises. In times of big societal changes due to a pandemic or other disaster, these simulations can give handles to support decision makers in their difficult task to act in a very short time with many uncertainties. Besides giving our results, we also will indicate why the results are trustworthy and interesting. Finally we also look what challenges should be picked up to convert the successful project into a sustainable research area.

  • 14. Jensen, Maarten
    et al.
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Vanhée, Loïs
    Dignum, Frank
    Deployment and Effects of an App for Tracking and Tracing Contacts during the COVID-19 Crisis2021In: Social Simulation for a Crisis: Results and Lessons from Simulating the COVID-19 Crisis / [ed] Dignum, Frank, Cham: Springer, 2021, p. 167-188Chapter in book (Other academic)
    Abstract [en]

    The general idea of tracking and tracing apps is that they track the contacts of users so that in case a user tests positive for COVID-19, all the other users that she has been in contact with get a warning signal that they have potentially been in contact with the COVID-19 virus. This is, to quarantine potential carriers of the virus even before they show symptoms. We set up a scenario in which we test the effects the introduction of such an app has on the dynamics of infection with varying amounts of app users. Running the experiments resulted in a slightly lower peak of infections for higher app usages and the total amount of infected individuals over the course of the whole run decreased not more than 10% in any case. The app seems mainly effective in decreasing contacts and infections in public spaces (except hospitals) while increasing the contacts and infections at home.

  • 15.
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Digitaliseringspotential av programmeringskurser inom den högre utbildningen2020In: Journal of Teaching and Learning in Higher Education (JoTL), E-ISSN 2004-4097, no 2Article in journal (Other academic)
    Abstract [sv]

    För studenter inom IT-relaterade ämnen är programmering en grundläggande kunskap som borde utvecklas tidigt i deras utbildning. Det innebär inte bara lärandet av syntax och semantik av ett visst programmeringsspråk, men också att utveckla förmågan att kunna kombinera olika enskilda instruktioner till en algoritm eller ett dataprogram som kan lösa ett visst problem. Hittills genomfördes många programmeringskurser inom högre utbildning som campuskurser och skiftet till distansundervisning medförde behovet att identifiera nya lämpliga undervisningsformer.

    Syftet med den här artikeln är att analysera befintliga online-lärandemiljöer för att identifiera innovativa verktyg samt didaktiska angreppssätt som kan användas i distansundervisning av programmering inom högre utbildning. I artikeln presenteras det en diskussion av deras lämplighet för digitalisering av olika moment i programmeringskurser, ur både studentens och lärarens perspektiv, men också hur den konstruktiva länkningen med aktuella kursmål kan uppnås eller styrkas. Digitaliseringspotentialen visas genom exemplet av kursen DA343A (”Objektorienterad programutveckling, trådar och datakommunikation”) på Malmö universitet, som riktar sig till studenter i kandidatprogrammet i datavetenskap med inriktning systemutveckling och högskoleingenjörsutbildningen i datateknik. 

    Download full text (pdf)
    fulltext
  • 16.
    Lorig, Fabian
    et al.
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Becker, Colja
    Trier University, Germany.
    Lebherz, Daniel
    Trier University, Germany.
    Rodermund, Stephanie
    Trier University, Germany.
    Timm, Ingo J.
    Trier University, Germany.
    Simulation-based Business Process Evaluation in Home Health Care Logistics Management2020In: Information and Communication Technologies for Ageing Well and e-Health: Proceedings of the 6th international conference on information and communication technologies for ageing well and e-health (ict4awe) / [ed] Martina Ziefle ; Nick Guldemond ;Leszek A. Maciaszek, Cham: Springer Publishing Company, 2020, Vol. 1387Conference paper (Refereed)
    Abstract [en]

    Home health care (HHC) providers face an increasing demand in care services, while the labor market only offers a limited number of professionals. To cope with this challenge from a HHC provider’s perspective, available resources must be deployed efficiently taking into account individual human needs and desires of employees as well as customers. On the one hand, corresponding strategic management questions arise, e.g., distribution or relocation of establishments or expansion of the vehicle fleet. On the other hand, logistical challenges such as the flexible and robust planning and scheduling of HHC service provision must be addressed by operational HHC management. This paper targets both perspectives by providing an integrated simulation-based framework for the evaluation of different business processes. Methods from Agent-based Simulation, Dynamic Microsimulation, and (Distributed) Artificial Intelligence are combined to investigate HHC service provision and to support practical decision-making. The presented approach aims to facilitate the reasonable development of the HHC provider’s organization to ensure the sustainable delivery of required medical care.

    Download full text (pdf)
    fulltext
  • 17.
    Lorig, Fabian
    et al.
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Jensen, Maarten
    Kammler, Christian
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Verhagen, Harko
    Comparative Validation of Simulation Models for the COVID-19 Crisis2021In: Social Simulation for a Crisis / [ed] Dignum, Frank, Cham: Springer, 2021, p. 331-352Chapter in book (Other academic)
    Abstract [en]

    When simulation models shall be used to support decision-making, the trustworthiness of the results need to be ensured. Usually, models are validated against real-world data. Yet, in the ongoing pandemic, there is a lack of respective data that can be used to validate the model’s behaviour. To overcome this issue, this chapter discusses the validation of simulation models for the Covid-19 pandemic by comparing their results among each other. To this end, we present a formal comparison between the existing behaviour-based epidemiological model that was developed at the University of Oxford and the ASSOCC model.

  • 18.
    Lorig, Fabian
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Johansson, Emil
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Agent-based Social Simulation of the Covid-19 Pandemic: A Systematic Review2021In: JASSS: Journal of Artificial Societies and Social Simulation, E-ISSN 1460-7425, Vol. 24, no 3, article id 5Article, review/survey (Refereed)
    Abstract [en]

    When planning interventions to limit the spread of Covid-19, the current state of knowledge about the disease and specific characteristics of the population need to be considered. Simulations can facilitate policy making as they take prevailing circumstances into account. Moreover, they allow for the investigation of the potential effects of different interventions using an artificial population. Agent-based Social Simulation (ABSS) is argued to be particularly useful as it can capture the behavior of and interactions between individuals. We performed a systematic literature reviewand identified 126 articles that describe ABSS of Covid-19 transmission processes. Our reviewshowed that ABSS is widely used for investigating the spread of Covid-19. Existing models are very heterogeneous with respect to their purpose, the number of simulated individuals, and the modeled geographical region, as well as how they model transmission dynamics, disease states, human behavior, and interventions. To this end, a discrepancy can be identified between the needs of policy makers and what is implemented by the simulation models. This also includes how thoroughly the models consider and represent the real world, e.g. in terms of factors that affect the transmission probability or how humans make decisions. Shortcomingswere also identified in the transparency of the presented models, e.g. in terms of documentation or availability, as well as in their validation, which might limit their suitability for supporting decision-making processes. We discuss how these issues can be mitigated to further establish ABSS as a powerful tool for crisis management.

    Download full text (pdf)
    fulltext
  • 19.
    Lorig, Fabian
    et al.
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University.
    Johansson, Emil
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Persson, Jan A.
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    A Simulation Study on Electric Last Mile Delivery with Mobile Smart Cargo Boxes2021In: Simulation in Produktion und Logistik 2021 / [ed] Jörg Franke; Peter Schuderer, Göttingen: Cuvillier Verlag, 2021, p. 177-186Conference paper (Refereed)
    Abstract [en]

    The increasing popularity of e-commerce requires efficient solutions for the provision of last mile logistics. There are different approaches for delivering parcels, e.g., home delivery, service points, or parcel lockers, which have different advantages and disadvantages for customers and logistics providers in terms of flexibility, accessibility, and operating costs. We have studied a novel transportation solution where electric vehicles dynamically set up smart cargo boxes, from which customers can fetch their delivery at any time of the day. This provides customers with a more flexible access to their packages and allows the service provider to deliver the parcels more efficiently. In this article, we present the results of a feasibility study conducted in Västra Hamnen, Malmö (Sweden). The developed simulation model shows that smart boxes not only are a viable approach for efficient last mile deliveries, but also result in considerably smaller travel distances compared to conventional package delivery.

    Download full text (pdf)
    fulltext
  • 20.
    Lorig, Fabian
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Norling, EmmaUniversity of Sheffield, Sheffield, UK.
    Multi-Agent-Based Simulation XXIII: 23rd International Workshop, MABS 2022, Virtual Event, May 8–9, 2022, Revised Selected Papers2023Conference proceedings (editor) (Refereed)
  • 21.
    Lorig, Fabian
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP). K2 – The Swedish Knowledge Centre for Public Transport.
    Persson, Jan A.
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). K2 – The Swedish Knowledge Centre for Public Transport.
    Michielsen, Astrid
    Trivector Traffic, Stockholm, Sweden.
    Simulating the Impact of Shared Mobility on Demand: a Study of Future Transportation Systems in Gothenburg, Sweden2023In: International Journal of Intelligent Transportation Systems Research, ISSN 1348-8503, Vol. 21, no 1, p. 129-144Article in journal (Refereed)
    Abstract [en]

    Self-driving cars enable dynamic shared mobility, where customers are independent of schedules and fixed stops. This study aims to investigate the potential effects shared mobility can have on future transportation. We simulate multiple scenarios to analyze the effects different service designs might have on vehicle kilometers, on the required number of shared vehicles, on the potential replacement of private cars, and on service metrics such as waiting times, travel times, and detour levels. To demonstrate how simulation can be used to analyze future mobility, we present a case study of the city of Gothenburg in Sweden, where we model travel demand in the morning hours of a workday. The results show that a significant decrease of vehicle kilometers can be achieved if all private car trips are replaced by rideshare and that shared vehicles can potentially replace at least 5 private cars during the morning peak.

    Download full text (pdf)
    fulltext
  • 22.
    Lorig, Fabian
    et al.
    Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).
    Timm, Ingo J.
    Trier University.
    Simulation-Based Data Acquisition2020In: Principles of Data Science / [ed] Hamid R. Arabnia, Kevin Daimi, Robert Stahlbock, Cristina Soviany, Leonard Heilig, Kai Brüssau, Springer, 2020, p. 1-15Chapter in book (Refereed)
    Abstract [en]

    In data science, the application of most approaches requires the existence of big data from a real-world system. Due to access limitations, nonexistence of the system, or temporal as well as economic restrictions, such data might not be accessible or available. To overcome a lack of real-world data, this chapter introduces simulation-based data acquisition as method for the generation of artificial data that serves as a substitute when applying data science techniques. Instead of gathering data from the real-world system, computer simulation is used to model and execute artificial systems that can provide a more accessible, economic, and robust source of big data. To this end, it is outlined how data science can benefit from simulation and vice versa. Specific approaches are introduced for the design and execution of experiments, and a selection of simulation frameworks is presented that facilitates the conducting of simulation studies for novice and professional users.

    Download full text (pdf)
    fulltext
  • 23.
    Lorig, Fabian
    et al.
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Vanhée, Loïs
    Department of Computing Science, Umeå University, Umeå, Sweden.
    Dignum, Frank
    Department of Computing Science, Umeå University, Umeå, Sweden.
    Agent-Based Social Simulation for Policy Making2023In: Human-Centered Artificial Intelligence / [ed] Mohamed Chetouani, Virginia Dignum, Paul Lukowicz, Carles Sierra, Springer Nature, 2023, p. 391-414Chapter in book (Refereed)
    Abstract [en]

    In agent-based social simulations (ABSS), an artificial population of intelligent agents that imitate human behavior is used to investigate complex phenomena within social systems. This is particularly useful for decision makers, where ABSS can provide a sandpit for investigating the effects of policies prior to their implementation. During the Covid-19 pandemic, for instance, sophisticated models of human behavior enable the investigation of the effects different interventions can have and even allow for analyzing why a certain situation occurred or why a specific behavior can be observed. In contrast to other applications of simulation, the use for policy making significantly alters the process of model building and assessment, and requires the modelers to follow different paradigms. In this chapter, we report on a tutorial that was organized as part of the ACAI 2021 summer school on AI in Berlin, with the goal of introducing agent-based social simulation as a method for facilitating policy making. The tutorial pursued six Intended Learning Outcomes (ILOs), which are accomplished by three sessions, each of which consists of both a conceptual and a practical part. We observed that the PhD students participating in this tutorial came from a variety of different disciplines, where ABSS is mostly applied as a research method. Thus, they do often not have the possibility to discuss their approaches with ABSS experts. Tutorials like this one provide them with a valuable platform to discuss their approaches, to get feedback on their models and architectures, and to get impulses for further research.

    The full text will be freely available from 2025-04-03 14:35
  • 24.
    Tucker, Jason
    et al.
    Malmö University, Faculty of Culture and Society (KS), Department of Global Political Studies (GPS).
    Lorig, Fabian
    Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
    Agent-based social simulations for health crises response: utilising the everyday digital health perspective2024In: Frontiers In Public Health, ISSN 2296-2565, Vol. 11, p. 1-6, article id 1337151Article in journal (Refereed)
    Abstract [en]

    There is increasing recognition of the role that artificial intelligence (AI) systems can play in managing health crises. One such approach, which allows for analysing the potential consequences of different policy interventions is agent-based social simulations (ABSS). Here, the actions and interactions of autonomous agents are modelled to generate virtual societies that can serve as a “testbed” for investigating and comparing different interventions and scenarios. This piece focuses on two key challenges of ABSS in collaborative policy interventions during the COVID-19 pandemic. These were defining valuable scenarios to simulate and the availability of appropriate data. This paper posits that drawing on the research on the “everyday” digital health perspective in designing ABSS before or during health crises, can overcome aspects of these challenges. The focus on digital health interventions reflects a rapid shift in the adoption of such technologies during and after the COVID-19 pandemic, and the new challenges this poses for policy makers. It is argued that by accounting for the everyday digital health in modelling, ABSS would be a more powerful tool in future health crisis management.

    Download full text (pdf)
    fulltext
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf