Publikationer från Malmö universitet
Ändra sökning
Avgränsa sökresultatet
1 - 9 av 9
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Caramaschi, Sara
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Ymeri, Gent
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Tsanas, Athanasios
    The Usher Institute, The University of Edinburgh, Edinburgh, UK.
    Wassenburg, Myrthe
    Karolinska Institute, Stockholm, Sweden.
    Svenningsson, Per
    Karolinska Institute, Stockholm, Sweden.
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    A Smartphone-Based Timed Up and Go Test for Parkinson’s Disease2024Ingår i: Pervasive Computing Technologies for Healthcare: 17th EAI International Conference, PervasiveHealth 2023, Malmö, Sweden, November 27-29, 2023, Proceedings / [ed] Dario Salvi, Pieter Van Gorp, Syed Ahmar Shah, Springer, 2024, s. 515-519Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Timed-Up and Go test is a simple yet effective test used to evaluate balance and mobility in conditions that affect movement, such as Parkinson’s disease. This test can inform clinicians about the monitoring and progression of the disease by measuring the time taken to complete the test. We used a smartphone app to obtain the phone’s inertial data and implemented an algorithm to automatically extract the time taken to complete the test. We considered data collected from six healthy participants performing tests at different speeds. The proposed method was further tested on twelve participants with Parkinson’s disease based on a reference measurement in clinic. We show that, for both groups, we obtain good accuracy (RMSE = 3.42 and 1.95 s) and a strong positive correlation (r = 0.85 and 0.83) between estimated duration and ground truth. We highlight limitations in our approach when the test is performed at very low speed or without a clear pause between the test and the user interaction with the phone. 

  • 2.
    Ymeri, Gent
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Machine Learning-Driven Analysis of Sensor Data for Objective Assessment of Parkinson's Disease Motor Symptoms in Home Environments2024Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Parkinson’s disease (PD) is a progressive neurodegenerative brain disorder that signifi- cantly impacts quality of life for those who are affected. It is a rapidly growing condition affecting millions of people worldwide, where treatments focus on managing symptoms and slowing the degenerative process, as there are no validated treatments that can stop its progression or preemptively prevent it. Effective management of the disease relies on accurate and timely assessment of symptoms based on clinical ratings, traditionally performed through clinical examinations using the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). However, in-clinic assessments are infrequent and may not capture the full spectrum of symptom fluctuations in daily life. While existing literature has focused on diagnosing PD, the current understanding falls short in terms of objectively quantifying its symptoms in daily-living conditions.

    Following a design science research methodology, this thesis responds to this research gap by exploring the feasibility of using smartphones to quantify PD symptoms in a real- world, at-home setting. The research presents a cross-platform mobile application de- veloped for data collection from PD patients with the aim to identify promising system components and data types for capturing PD symptoms. Using data mining and machine learning techniques, the research explores if it is feasible to estimate the MDS-UPDRS scale based on objective measurements from smartphone-collected data. Additionally, it investigates the usability of the proposed mobile application for PD patients. By de- veloping and validating a cross-platform mobile application for symptom capturing, this thesis contributes both in terms of research results communicated in the associated peer- reviewed papers, and by providing an open source based app which makes PD symptom assessments more accessible, objective, and patient-centric.

    Delarbeten
    1. Linking data collected from mobile phones withsymptoms level in Parkinson’s Disease: Dataexploration of the mPower study
    Öppna denna publikation i ny flik eller fönster >>Linking data collected from mobile phones withsymptoms level in Parkinson’s Disease: Dataexploration of the mPower study
    2022 (Engelska)Ingår i: Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceedings / [ed] Tsanas, Athanasios; Triantafyllidis, Andreas, Cham: Springer, 2022Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    Advancements in technology, such as smartphones and wearabledevices, can be used for collecting movement data through embeddedsensors. This paper focuses on linking Parkinson’s Disease severitywith data collected from mobile phones in the mPower study. As referencefor symptoms’ severity, we use the answers provided to part 2 ofthe standard MDS-UPDRS scale. As input variables, we use the featurescomputed within mPower from the raw data collected during 4 phonebasedactivities: walking, rest, voice and finger tapping. The features arefiltered in order to remove unreliable datapoints and associated to referencevalues. After pre-processing, 5 Machine Learning algorithms areapplied for predictive analysis. We show that, notwithstanding the noisedue to the data being collected in an uncontrolled manner, the regressedsymptom levels are moderately to strongly correlated with the actualvalues (highest Pearson’s correlation = 0.6). However, the high differencebetween the values also implies that the regressed values can not beconsidered as a substitute for a conventional clinical assessment (lowestmean absolute error = 5.4).

    Ort, förlag, år, upplaga, sidor
    Cham: Springer, 2022
    Serie
    Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, ISSN 1867-8211
    Nyckelord
    mobile health, Parkinson’s disease, mPower data
    Nationell ämneskategori
    Datavetenskap (datalogi)
    Identifikatorer
    urn:nbn:se:mau:diva-58646 (URN)10.1007/978-3-031-34586-9_29 (DOI)2-s2.0-85164108273 (Scopus ID)978-3-031-34585-2 (ISBN)978-3-031-34586-9 (ISBN)
    Konferens
    16th EAI International Conference, Pervasive Health 2022, Thessaloniki, Greece, December 12-14, 2022
    Tillgänglig från: 2023-03-14 Skapad: 2023-03-14 Senast uppdaterad: 2024-10-30Bibliografiskt granskad
    2. Mobistudy: Mobile-based, platform-independent, multi-dimensional data collection for clinical studies
    Öppna denna publikation i ny flik eller fönster >>Mobistudy: Mobile-based, platform-independent, multi-dimensional data collection for clinical studies
    Visa övriga...
    2022 (Engelska)Ingår i: IoT 2021: Conference Proceedings, ACM Digital Library, 2022, s. 219-222Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    Internet of Things (IoT) can work as a useful tool for clinical research. We developed a software platform that allows researchers to publish clinical studies and volunteers to participate into them using an app and connected IoT devices. The platform includes a REST API, a web interface for researchers and an app that collects data during tasks volunteers are invited to contribute. Nine tasks have been developed: Forms, Positioning, Finger tapping, Pulse-oximetry, Peak Flow measurement, Activity tracking, Data query, Queen’s College step test and Six-minute walk test. These leverage sensors embedded in the phone, connected Bluetooth devices and additional APIs like HealthKit and Google Fit. Currently, the platform is used in two clinical studies by 25 patients: an asthma management study in the United Kingdom, and a neuropathic pain management study in Spain.

    Ort, förlag, år, upplaga, sidor
    ACM Digital Library, 2022
    Nyckelord
    clinical research, m-Health, IoT
    Nationell ämneskategori
    Datavetenskap (datalogi)
    Identifikatorer
    urn:nbn:se:mau:diva-50618 (URN)10.1145/3494322.3494363 (DOI)000936000600025 ()2-s2.0-85127119368 (Scopus ID)978-1-4503-8566-4 (ISBN)
    Konferens
    11th International Conference on the Internet of Things, November 8-11, 2021. St.Gallen, Switzerland
    Forskningsfinansiär
    KK-stiftelsen, 20140035
    Tillgänglig från: 2022-03-14 Skapad: 2022-03-14 Senast uppdaterad: 2024-10-30Bibliografiskt granskad
    3. Quantifying Parkinson's disease severity using mobile wearable devices and machine learning: the ParkApp pilot study protocol
    Öppna denna publikation i ny flik eller fönster >>Quantifying Parkinson's disease severity using mobile wearable devices and machine learning: the ParkApp pilot study protocol
    Visa övriga...
    2023 (Engelska)Ingår i: BMJ Open, E-ISSN 2044-6055, Vol. 13, nr 12, artikel-id e077766Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    INTRODUCTION: The clinical assessment of Parkinson's disease (PD) symptoms can present reliability issues and, with visits typically spaced apart 6 months, can hardly capture their frequent variability. Smartphones and smartwatches along with signal processing and machine learning can facilitate frequent, remote, reliable and objective assessments of PD from patients' homes.

    AIM: To investigate the feasibility, compliance and user experience of passively and actively measuring symptoms from home environments using data from sensors embedded in smartphones and a wrist-wearable device.

    METHODS AND ANALYSIS: In an ongoing clinical feasibility study, participants with a confirmed PD diagnosis are being recruited. Participants perform activity tests, including Timed Up and Go (TUG), tremor, finger tapping, drawing and vocalisation, once a week for 2 months using the Mobistudy smartphone app in their homes. Concurrently, participants wear the GENEActiv wrist device for 28 days to measure actigraphy continuously. In addition to using sensors, participants complete the Beck's Depression Inventory, Non-Motor Symptoms Questionnaire (NMSQuest) and Parkinson's Disease Questionnaire (PDQ-8) questionnaires at baseline, at 1 month and at the end of the study. Sleep disorders are assessed through the Parkinson's Disease Sleep Scale-2 questionnaire (weekly) and a custom sleep quality daily questionnaire. User experience questionnaires, Technology Acceptance Model and User Version of the Mobile Application Rating Scale, are delivered at 1 month. Clinical assessment (Movement Disorder Society-Unified Parkinson Disease Rating Scale (MDS-UPDRS)) is performed at enrollment and the 2-month follow-up visit. During visits, a TUG test is performed using the smartphone and the G-Walk motion sensor as reference device. Signal processing and machine learning techniques will be employed to analyse the data collected from Mobistudy app and the GENEActiv and correlate them with the MDS-UPDRS. Compliance and user aspects will be informing the long-term feasibility.

    ETHICS AND DISSEMINATION: The study received ethical approval by the Swedish Ethical Review Authority (Etikprövningsmyndigheten), with application number 2022-02885-01. Results will be reported in peer-reviewed journals and conferences. Results will be shared with the study participants.

    Ort, förlag, år, upplaga, sidor
    BMJ Publishing Group Ltd, 2023
    Nyckelord
    health informatics, parkinson's disease, telemedicine
    Nationell ämneskategori
    Neurologi
    Identifikatorer
    urn:nbn:se:mau:diva-64860 (URN)10.1136/bmjopen-2023-077766 (DOI)001134943800008 ()38154904 (PubMedID)2-s2.0-85181165016 (Scopus ID)
    Tillgänglig från: 2024-01-08 Skapad: 2024-01-08 Senast uppdaterad: 2024-10-30Bibliografiskt granskad
    4. Measuring finger dexterity in Parkinson's disease with mobile phones
    Öppna denna publikation i ny flik eller fönster >>Measuring finger dexterity in Parkinson's disease with mobile phones
    Visa övriga...
    2024 (Engelska)Ingår i: 2024 IEEE International Conference on Pervasive Computing and Communications: workshops and other affiliated events, percom workshops, Institute of Electrical and Electronics Engineers (IEEE), 2024, s. 112-116Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    This work aims to link finger tapping and drawing tests performed on mobile phone screens with clinical ratings of Parkinson's Disease (PD). Thirty PD patients were recruited and instructed to carry out these tests in their homes. Features were extracted and used to assess the validity of the data vis a vis clinical scales (MDS-UPDRS). Statistical tests show that several features correlate with clinical scores (max correlation 0.54) and significant differences between data collected before and after medication intake (p<0.05), demonstrating the clinical validity of smartphone data. The use of Machine Learning (ML) algorithms to regress Part-3 of MDS-UPDRS further supports the validity with an absolute mean error of 6.25 (over a 0-72 scale).

    Ort, förlag, år, upplaga, sidor
    Institute of Electrical and Electronics Engineers (IEEE), 2024
    Serie
    IEEE Annual Conference on Pervasive Computing and Communications Workshops, ISSN 2836-5348
    Nationell ämneskategori
    Annan data- och informationsvetenskap
    Identifikatorer
    urn:nbn:se:mau:diva-69978 (URN)10.1109/PerComWorkshops59983.2024.10503245 (DOI)001216220000036 ()2-s2.0-85192479973 (Scopus ID)979-8-3503-0436-7 (ISBN)979-8-3503-0437-4 (ISBN)
    Konferens
    IEEE International Conference on Pervasive Computing and Communications (PerCom), MAR 11-15, 2024, Biarritz, FRANCE
    Tillgänglig från: 2024-07-30 Skapad: 2024-07-30 Senast uppdaterad: 2024-12-19Bibliografiskt granskad
    5. Usability of a Mobile Application for Patients with Parkinson’s Disease
    Öppna denna publikation i ny flik eller fönster >>Usability of a Mobile Application for Patients with Parkinson’s Disease
    Visa övriga...
    2024 (Engelska)Ingår i: 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Institute of Electrical and Electronics Engineers (IEEE), 2024, s. 1-6Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    This paper investigates usability aspects of a mobile application aimed at monitoring symptoms of Parkinson’s disease (PD) patients. Thirty PD patients collected data through mobile-based questionnaires and activity tasks aimed at measuring motor and non-motor symptoms for a duration of two months. We report the results about usability conducted within this study. A combination of methods consisting of the uMARS questionnaire and interviews with PD patients inform the usability aspects of the mobile application. Results indicate that the app is overall received well and is usable (median uMARS score=4). Interviews reveal usability issues related to the size of textual instructions and buttons, and to the context of use of the app, particularly when the phone is used as a sensor. These findings highlight the need of co-design and preliminary testing when developing apps for PD.

    Ort, förlag, år, upplaga, sidor
    Institute of Electrical and Electronics Engineers (IEEE), 2024
    Serie
    Annual International Conference of the IEEE Engineering in Medicine and Biology Society, ISSN 2375-7477, E-ISSN 2694-0604
    Nyckelord
    Parkinson’s disease, mobile app, usability, uMARS
    Nationell ämneskategori
    Data- och informationsvetenskap
    Identifikatorer
    urn:nbn:se:mau:diva-72836 (URN)10.1109/embc53108.2024.10782276 (DOI)979-8-3503-7149-9 (ISBN)
    Konferens
    46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA , 15-19 July 2024
    Forskningsfinansiär
    KK-stiftelsen
    Tillgänglig från: 2024-12-19 Skapad: 2024-12-19 Senast uppdaterad: 2024-12-19Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    Comprehensive summary
    Ladda ner (jpg)
    preview image
  • 3.
    Ymeri, Gent
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Grech, Nigel Sjolin
    Tech Univ Denmark, Dept Hlth Technol, Lyngby, Denmark.
    Wassenburg, Myrthe
    Karolinska Inst, Dept Clin Neurosci, Stockholm, Sweden.
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Svenningsson, Per
    Karolinska Inst, Dept Clin Neurosci, Stockholm, Sweden.
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Measuring finger dexterity in Parkinson's disease with mobile phones2024Ingår i: 2024 IEEE International Conference on Pervasive Computing and Communications: workshops and other affiliated events, percom workshops, Institute of Electrical and Electronics Engineers (IEEE), 2024, s. 112-116Konferensbidrag (Refereegranskat)
    Abstract [en]

    This work aims to link finger tapping and drawing tests performed on mobile phone screens with clinical ratings of Parkinson's Disease (PD). Thirty PD patients were recruited and instructed to carry out these tests in their homes. Features were extracted and used to assess the validity of the data vis a vis clinical scales (MDS-UPDRS). Statistical tests show that several features correlate with clinical scores (max correlation 0.54) and significant differences between data collected before and after medication intake (p<0.05), demonstrating the clinical validity of smartphone data. The use of Machine Learning (ML) algorithms to regress Part-3 of MDS-UPDRS further supports the validity with an absolute mean error of 6.25 (over a 0-72 scale).

  • 4.
    Ymeri, Gent
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Maus, Benjamin
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Wassenburg, Myrthe
    Karolinska Institute, Department of Clinical Neuroscience, Stockholm, Sweden.
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Svenningsson, Per
    Karolinska Institute, Department of Clinical Neuroscience, Stockholm, Sweden.
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Usability of a Mobile Application for Patients with Parkinson’s Disease2024Ingår i: 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Institute of Electrical and Electronics Engineers (IEEE), 2024, s. 1-6Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper investigates usability aspects of a mobile application aimed at monitoring symptoms of Parkinson’s disease (PD) patients. Thirty PD patients collected data through mobile-based questionnaires and activity tasks aimed at measuring motor and non-motor symptoms for a duration of two months. We report the results about usability conducted within this study. A combination of methods consisting of the uMARS questionnaire and interviews with PD patients inform the usability aspects of the mobile application. Results indicate that the app is overall received well and is usable (median uMARS score=4). Interviews reveal usability issues related to the size of textual instructions and buttons, and to the context of use of the app, particularly when the phone is used as a sensor. These findings highlight the need of co-design and preliminary testing when developing apps for PD.

  • 5.
    Salvi, Dario
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Ymeri, Gent
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Jimeno, Daniel
    Escuela Tecnica Superior de Ingenieria y sistemas de Telecomunicacion, Universidad Politecnica de Madrid.
    Soto-Léon, Vanesa
    National Hospital for Paraplegics, Toledo.
    Pérez Borrego, Yolanda
    National Hospital for Paraplegics, Toledo.
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Carrasco-Lopez, Carmen
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    An IoT-based system for the study of neuropathic pain in spinal cord injury2023Ingår i: Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceeding / [ed] Athanasios Tsanas; Andreas Triantafyllidis, Springer, 2023, s. 93-103Konferensbidrag (Refereegranskat)
    Abstract [en]

    Neuropathic pain is a difficult condition to treat and would require reliable biomarkers to personalise and optimise treatments. To date, pain levels are mostly measured with subjective scales, but research has shown that electroencephalography (EEG) and heart rate variability (HRV) can be linked to those levels. Internet of Things technology could allow embedding EEG and HRV in easy-to-use systems that patients can use at home in their daily life. We have developed a system for home monitoring that includes a portable EEG device, a tablet application to guide patients through imaginary motor tasks while recording EEG, a wearable HRV sensor and a mobile phone app to report pain levels. We are using this system in a clinical study involving 15 spinal cord injury patients for one month. Preliminary results show that relevant data are being collected, with inter and intra-patients variability for both HRV and pain levels, and that the mobile phone app is perceived as usable, of good quality and useful. However, because of its complexity, the system requires some effort from patients, is sometimes unreliable and the collected EEG signals are not always of the desired quality.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Ymeri, Gent
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Wassenburg, Myrthe Vivianne
    Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Center for Neurology, Academic Specialist Center Torsplan, Region Stockholm, Sweden.
    Tsanas, Athanasios
    Usher Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK; Alan Turing Institute, London, UK.
    Svenningsson, Per
    Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Center for Neurology, Academic Specialist Center Torsplan, Region Stockholm, Sweden.
    Quantifying Parkinson's disease severity using mobile wearable devices and machine learning: the ParkApp pilot study protocol2023Ingår i: BMJ Open, E-ISSN 2044-6055, Vol. 13, nr 12, artikel-id e077766Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    INTRODUCTION: The clinical assessment of Parkinson's disease (PD) symptoms can present reliability issues and, with visits typically spaced apart 6 months, can hardly capture their frequent variability. Smartphones and smartwatches along with signal processing and machine learning can facilitate frequent, remote, reliable and objective assessments of PD from patients' homes.

    AIM: To investigate the feasibility, compliance and user experience of passively and actively measuring symptoms from home environments using data from sensors embedded in smartphones and a wrist-wearable device.

    METHODS AND ANALYSIS: In an ongoing clinical feasibility study, participants with a confirmed PD diagnosis are being recruited. Participants perform activity tests, including Timed Up and Go (TUG), tremor, finger tapping, drawing and vocalisation, once a week for 2 months using the Mobistudy smartphone app in their homes. Concurrently, participants wear the GENEActiv wrist device for 28 days to measure actigraphy continuously. In addition to using sensors, participants complete the Beck's Depression Inventory, Non-Motor Symptoms Questionnaire (NMSQuest) and Parkinson's Disease Questionnaire (PDQ-8) questionnaires at baseline, at 1 month and at the end of the study. Sleep disorders are assessed through the Parkinson's Disease Sleep Scale-2 questionnaire (weekly) and a custom sleep quality daily questionnaire. User experience questionnaires, Technology Acceptance Model and User Version of the Mobile Application Rating Scale, are delivered at 1 month. Clinical assessment (Movement Disorder Society-Unified Parkinson Disease Rating Scale (MDS-UPDRS)) is performed at enrollment and the 2-month follow-up visit. During visits, a TUG test is performed using the smartphone and the G-Walk motion sensor as reference device. Signal processing and machine learning techniques will be employed to analyse the data collected from Mobistudy app and the GENEActiv and correlate them with the MDS-UPDRS. Compliance and user aspects will be informing the long-term feasibility.

    ETHICS AND DISSEMINATION: The study received ethical approval by the Swedish Ethical Review Authority (Etikprövningsmyndigheten), with application number 2022-02885-01. Results will be reported in peer-reviewed journals and conferences. Results will be shared with the study participants.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Ymeri, Gent
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Linking data collected from mobile phones withsymptoms level in Parkinson’s Disease: Dataexploration of the mPower study2022Ingår i: Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceedings / [ed] Tsanas, Athanasios; Triantafyllidis, Andreas, Cham: Springer, 2022Konferensbidrag (Refereegranskat)
    Abstract [en]

    Advancements in technology, such as smartphones and wearabledevices, can be used for collecting movement data through embeddedsensors. This paper focuses on linking Parkinson’s Disease severitywith data collected from mobile phones in the mPower study. As referencefor symptoms’ severity, we use the answers provided to part 2 ofthe standard MDS-UPDRS scale. As input variables, we use the featurescomputed within mPower from the raw data collected during 4 phonebasedactivities: walking, rest, voice and finger tapping. The features arefiltered in order to remove unreliable datapoints and associated to referencevalues. After pre-processing, 5 Machine Learning algorithms areapplied for predictive analysis. We show that, notwithstanding the noisedue to the data being collected in an uncontrolled manner, the regressedsymptom levels are moderately to strongly correlated with the actualvalues (highest Pearson’s correlation = 0.6). However, the high differencebetween the values also implies that the regressed values can not beconsidered as a substitute for a conventional clinical assessment (lowestmean absolute error = 5.4).

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Ymeri, Gent
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Thanasis, Tsanas
    Usher Institute, The University of Edinburgh, UK.
    Svenningsson, Per
    Department of Clinical Neuroscience, Karolinska Institute.
    Mobile-based multi-dimensional data collection for Parkinson’s symptoms in home environments2022Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    We extended the Mobistudy app for clinical research in order to gather data about Parkinson’s motor and non-motor symptoms. We developed 5 tests that make use of the phone’s embedded sensors and 3 questionnaires. We show through data collected by healthy individuals simulating PD symptoms that the tests are able to identify the presence of symptoms.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Salvi, Dario
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Ymeri, Gent
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Carrasco-Lopez, Carmen
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Tsang, Kevin C.H.
    University of Edinburgh, United Kingdom.
    Shah, Seyed Ahmar
    University of Edinburgh, United Kingdom.
    Mobistudy: Mobile-based, platform-independent, multi-dimensional data collection for clinical studies2022Ingår i: IoT 2021: Conference Proceedings, ACM Digital Library, 2022, s. 219-222Konferensbidrag (Refereegranskat)
    Abstract [en]

    Internet of Things (IoT) can work as a useful tool for clinical research. We developed a software platform that allows researchers to publish clinical studies and volunteers to participate into them using an app and connected IoT devices. The platform includes a REST API, a web interface for researchers and an app that collects data during tasks volunteers are invited to contribute. Nine tasks have been developed: Forms, Positioning, Finger tapping, Pulse-oximetry, Peak Flow measurement, Activity tracking, Data query, Queen’s College step test and Six-minute walk test. These leverage sensors embedded in the phone, connected Bluetooth devices and additional APIs like HealthKit and Google Fit. Currently, the platform is used in two clinical studies by 25 patients: an asthma management study in the United Kingdom, and a neuropathic pain management study in Spain.

1 - 9 av 9
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf