Publikationer från Malmö universitet
Ändra sökning
Avgränsa sökresultatet
1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Engström, Jimmy
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Sony Europe B.V, Lund, Sweden.
    Persson, Jan A.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Accurate indoor positioning by combining sensor fusion and obstruction compensation2023Ingår i: 2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Institute of Electrical and Electronics Engineers (IEEE), 2023Konferensbidrag (Refereegranskat)
    Abstract [en]

    Our dependency on Global Navigation Satellite System (GNSS) for getting directions, tracking items, locating friends, or getting maps of the world has increased tremendously over the last decade. However, as soon as we enter a building, the signal strength of the satellites is too low, and we need to resort to other technologies to achieve the same goals. An Indoor Positioning System (IPS) may utilize a wide range of methods for positioning a device, such as fingerprinting, multilateration, or sensor fusion, while using one or several radio technologies to measure Received Signal Strength (RSS) or Time of Arrival(ToA). Sensor fusion is an efficient approach where an Inertial Measurement Unit (IMU) is combined with, e.g., RSS measurements converted to distances. But this approach has significant drawbacks in areas where, e.g., walls or large objects obstruct the signal path, which introduces bias in the distance estimates. This paper addresses the bias caused by signal path obstruction by compensating the measured RSS with localized RSS attenuation adjustments and thereby increasing the accuracy of the sensor fusion model significantly. We also show that a system can learn the compensation parameters over time, reducing the installationefforts and achieving higher accuracy than a fingerprinting-based system.

  • 2.
    Engström, Jimmy
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Scaling Indoor Positioning: improving accuracy and privacy of indoor positioning2023Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Our phones have many uses for positioning technologies, such as navigation, LocationBased Services (LBS), emergency positioning, fitness applications, and advertising. We trust our phones and wearables to be location-aware. However, as soon as we enter a building, we can no longer use GPS signals, as their already weak signals are well below the background noise of the environment. This requires us to develop alternatives, such as installing active radio beacons, using existing radio infrastructure, applying environmental sensing based on barometric pressure and magnetic fields, or utilizing Inertial Measurement Units (IMUs) to estimate the user location. This licentiate thesis aims to evaluate beacon-based indoor positioning, where we assume installing a set of small battery-powered Bluetooth low-energy (BLE) beacons are possible. In particular, the thesis addresses essential factors such as installation effort, accuracy, the privacy aspects of an Indoor Positioning System(IPS), and mitigation of accuracy issues related to radio signal shadowing in complex indoor environments. The goal is to solve some obstacles to the widespread adoption of indoor positioning solutions.

    Delarbeten
    1. Improving Indoor Positioning With Adaptive Noise Modeling
    Öppna denna publikation i ny flik eller fönster >>Improving Indoor Positioning With Adaptive Noise Modeling
    2020 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 8, s. 227213-227221Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Indoor positioning is important for applications within Internet of Things, such as equipment tracking and indoor maps. Inexpensive Bluetooth-beacons have become common for such applications, where the distance is estimated using the Received Signal Strength. Large installations require substantial efforts, either in determining the exact location of all beacons to facilitate lateration, or collecting signal strength data from a grid over all locations to facilitate fingerprinting. To reduce this initial setup cost, one may infer the positions using Simultaneous Location and Mapping. In this paper, we use a mobile phone equipped with an Inertial Measurement Unit, a Bluetooth receiver, and an Unscented Kalman Filter to infer beacon positions. Further, we apply adaptive noise modeling in the filter based on the estimated distance of the beacons, in contrast to using a fixed noise estimate which is the common approach. This gives us more granular control of how much impact each signal strength reading has on the position estimates. The adaptive model decreases the beacon positioning errors by 27% and the user positioning errors by 21%. The positioning accuracy is 0.3 m better compared to using known beacon positions with fixed noise, while the effort to setup and maintain the position of each beacon is also substantially reduced. Therefore, adaptive noise modeling of Received Signal Strength is a significant improvement over static noise modeling for indoor positioning.

    Ort, förlag, år, upplaga, sidor
    IEEE, 2020
    Nyckelord
    Kalman filters, Adaptation models, Noise measurement, Bluetooth, Stochastic processes, Receivers, Process control, Adaptive noise, BLE, indoor location, indoor positioning, unscented kalman filter
    Nationell ämneskategori
    Signalbehandling
    Identifikatorer
    urn:nbn:se:mau:diva-40111 (URN)10.1109/ACCESS.2020.3045615 (DOI)000604515600001 ()2-s2.0-85108304308 (Scopus ID)
    Tillgänglig från: 2021-01-28 Skapad: 2021-01-28 Senast uppdaterad: 2023-10-17Bibliografiskt granskad
    2. Some Design Considerations in Passive Indoor Positioning Systems
    Öppna denna publikation i ny flik eller fönster >>Some Design Considerations in Passive Indoor Positioning Systems
    2023 (Engelska)Ingår i: Sensors, E-ISSN 1424-8220, Vol. 23, nr 12, artikel-id 5684Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    User location is becoming an increasingly common and important feature for a wide range of services. Smartphone owners increasingly use location-based services, as service providers add context-enhanced functionality such as car-driving routes, COVID-19 tracking, crowdedness indicators, and suggestions for nearby points of interest. However, positioning a user indoors is still problematic due to the fading of the radio signal caused by multipath and shadowing, where both have complex dependencies on the indoor environment. Location fingerprinting is a common positioning method where Radio Signal Strength (RSS) measurements are compared to a reference database of previously stored RSS values. Due to the size of the reference databases, these are often stored in the cloud. However, server-side positioning computations make preserving the user's privacy problematic. Given the assumption that a user does not want to communicate his/her location, we pose the question of whether a passive system with client-side computations can substitute fingerprinting-based systems, which commonly use active communication with a server. We compared two passive indoor location systems based on multilateration and sensor fusion using an Unscented Kalman Filter (UKF) with fingerprinting and show how these may provide accurate indoor positioning without compromising the user's privacy in a busy office environment.

    Ort, förlag, år, upplaga, sidor
    MDPI, 2023
    Nyckelord
    BLE, fingerprinting, indoor positioning, multilateration, RSSI, privacy
    Nationell ämneskategori
    Signalbehandling
    Identifikatorer
    urn:nbn:se:mau:diva-61951 (URN)10.3390/s23125684 (DOI)001017806900001 ()37420850 (PubMedID)2-s2.0-85163999180 (Scopus ID)
    Tillgänglig från: 2023-08-17 Skapad: 2023-08-17 Senast uppdaterad: 2023-10-03Bibliografiskt granskad
    3. Accurate indoor positioning by combining sensor fusion and obstruction compensation
    Öppna denna publikation i ny flik eller fönster >>Accurate indoor positioning by combining sensor fusion and obstruction compensation
    2023 (Engelska)Ingår i: 2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Institute of Electrical and Electronics Engineers (IEEE), 2023Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    Our dependency on Global Navigation Satellite System (GNSS) for getting directions, tracking items, locating friends, or getting maps of the world has increased tremendously over the last decade. However, as soon as we enter a building, the signal strength of the satellites is too low, and we need to resort to other technologies to achieve the same goals. An Indoor Positioning System (IPS) may utilize a wide range of methods for positioning a device, such as fingerprinting, multilateration, or sensor fusion, while using one or several radio technologies to measure Received Signal Strength (RSS) or Time of Arrival(ToA). Sensor fusion is an efficient approach where an Inertial Measurement Unit (IMU) is combined with, e.g., RSS measurements converted to distances. But this approach has significant drawbacks in areas where, e.g., walls or large objects obstruct the signal path, which introduces bias in the distance estimates. This paper addresses the bias caused by signal path obstruction by compensating the measured RSS with localized RSS attenuation adjustments and thereby increasing the accuracy of the sensor fusion model significantly. We also show that a system can learn the compensation parameters over time, reducing the installationefforts and achieving higher accuracy than a fingerprinting-based system.

    Ort, förlag, år, upplaga, sidor
    Institute of Electrical and Electronics Engineers (IEEE), 2023
    Serie
    International Conference on Indoor Positioning and Indoor Navigation, ISSN 2162-7347, E-ISSN 2471-917X
    Nyckelord
    IPS, RTLS, Indoor Positioning, Fingerprinting, Multilateration, Sensor Fusion
    Nationell ämneskategori
    Datavetenskap (datalogi)
    Identifikatorer
    urn:nbn:se:mau:diva-62911 (URN)10.1109/IPIN57070.2023.10332536 (DOI)2-s2.0-85180781818 (Scopus ID)979-8-3503-2011-4 (ISBN)979-8-3503-2012-1 (ISBN)
    Konferens
    IEEE 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), 25-28 September 2023, Nuremberg
    Tillgänglig från: 2023-10-03 Skapad: 2023-10-03 Senast uppdaterad: 2024-06-17Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (jpg)
    presentationsbild
  • 3.
    Engström, Jimmy
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Sony Europe BV, S-22362 Lund, Sweden..
    Jevinger, Åse
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Persson, Jan A.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Some Design Considerations in Passive Indoor Positioning Systems2023Ingår i: Sensors, E-ISSN 1424-8220, Vol. 23, nr 12, artikel-id 5684Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    User location is becoming an increasingly common and important feature for a wide range of services. Smartphone owners increasingly use location-based services, as service providers add context-enhanced functionality such as car-driving routes, COVID-19 tracking, crowdedness indicators, and suggestions for nearby points of interest. However, positioning a user indoors is still problematic due to the fading of the radio signal caused by multipath and shadowing, where both have complex dependencies on the indoor environment. Location fingerprinting is a common positioning method where Radio Signal Strength (RSS) measurements are compared to a reference database of previously stored RSS values. Due to the size of the reference databases, these are often stored in the cloud. However, server-side positioning computations make preserving the user's privacy problematic. Given the assumption that a user does not want to communicate his/her location, we pose the question of whether a passive system with client-side computations can substitute fingerprinting-based systems, which commonly use active communication with a server. We compared two passive indoor location systems based on multilateration and sensor fusion using an Unscented Kalman Filter (UKF) with fingerprinting and show how these may provide accurate indoor positioning without compromising the user's privacy in a busy office environment.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Engström, Jimmy
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Sony Europe B.V., Lund, Sweden.
    Improving Indoor Positioning With Adaptive Noise Modeling2020Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 8, s. 227213-227221Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Indoor positioning is important for applications within Internet of Things, such as equipment tracking and indoor maps. Inexpensive Bluetooth-beacons have become common for such applications, where the distance is estimated using the Received Signal Strength. Large installations require substantial efforts, either in determining the exact location of all beacons to facilitate lateration, or collecting signal strength data from a grid over all locations to facilitate fingerprinting. To reduce this initial setup cost, one may infer the positions using Simultaneous Location and Mapping. In this paper, we use a mobile phone equipped with an Inertial Measurement Unit, a Bluetooth receiver, and an Unscented Kalman Filter to infer beacon positions. Further, we apply adaptive noise modeling in the filter based on the estimated distance of the beacons, in contrast to using a fixed noise estimate which is the common approach. This gives us more granular control of how much impact each signal strength reading has on the position estimates. The adaptive model decreases the beacon positioning errors by 27% and the user positioning errors by 21%. The positioning accuracy is 0.3 m better compared to using known beacon positions with fixed noise, while the effort to setup and maintain the position of each beacon is also substantially reduced. Therefore, adaptive noise modeling of Received Signal Strength is a significant improvement over static noise modeling for indoor positioning.

    Ladda ner fulltext (pdf)
    fulltext
1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf