Publikationer från Malmö universitet
Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 10/12-2024, kl 12.00-13.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
Avgränsa sökresultatet
1 - 30 av 30
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Gajdek, Dorotea
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Wallander, Harald J.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Abbondanza, Giuseppe
    Chalmers University of Technology, Department of Chemical Physics, SWEDEN.
    Harlow, Gary S
    University of Oregon, Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, UNITED STATES OF AMERICA.
    Gustafson, Johan
    Lund University, Department of Physics, SWEDEN.
    Blomberg, Sara
    Lunds Tekniska Högskola, Department of Process and Life Science Engineering, SWEDEN.
    Carlsson, Per-Anders
    Chalmers University of Technology, Department of Chemistry and Chemical engineering, SWEDEN.
    Just, Justus
    Lund University, MAX IV Laboratory, SWEDEN.
    Lundgren, Edvin
    Lunds Universitet, Department of Physics, SWEDEN.
    Merte, Lindsay Richard
    Lund University, Dept. of Physics, Synchrotron Radiation Research, Sölvegatan 14, 22362, Lund, SWEDE.
    Operando XANES Reveals the Chemical State of Iron-Oxide Monolayers During Low-Temperature CO Oxidation2024Ingår i: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, artikel-id e202400835Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have used grazing incidence X-ray absorption near edge spectroscopy (XANES) to investigate the behavior of monolayer FeOx films on Pt(111) under near ambient pressure CO oxidation conditions with a total gas pressure of 1 bar. Spectra indicate reversible changes during oxidation and reduction by O2 and CO at 150ºC, attributed to a transformation between FeO bilayer and FeO2 trilayer phases. The trilayer phase is also reduced upon heating in CO+O2, consistent with a Mars-van-Krevelen type mechanism for CO oxidation. At higher temperatures, the monolayer film dewets the surface, resulting in a loss of the observed reducibility. A similar iron oxide film prepared on Au(111) shows little sign of reduction or oxidation under the same conditions. The results highlight the unique properties of monolayer FeO and the importance of the Pt support in this reaction. The study furthermore demonstrates the power of grazing-incidence XAFS for in situ studies of these model catalysts under realistic conditions.

  • 2.
    Grespi, A.
    et al.
    Division of Synchrotron Radiation Research, Lund University, Professorsgatan 1, Lund, 22363, Sweden; NanoLund, Lund University, Professorsgatan 1, Lund, 22363, Sweden.
    Larsson, A.
    Division of Synchrotron Radiation Research, Lund University, Professorsgatan 1, Lund, 22363, Sweden; NanoLund, Lund University, Professorsgatan 1, Lund, 22363, Sweden.
    Abbondanza, G.
    Department of Physics, Chalmers University of Technology, Chalmersplatsen 4, Gothenburg 41296, Sweden.
    Eidhagen, J.
    Alleima (former Sandvik Materials Technology), Sandviken, Sweden.
    Gajdek, Dorotea
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University, Professorsgatan 1, Lund 22363, Sweden.
    Manidi, J.
    Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, G. Natta, Milano 20133, Italy.
    Tayal, A.
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg D-22607, Germany.
    Pan, J.
    KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Stockholm, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, G. Natta, Milano 20133, Italy.
    Lundgren, E.
    Division of Synchrotron Radiation Research, Lund University, Professorsgatan 1, Lund, 22363, Sweden; NanoLund, Lund University, Professorsgatan 1, Lund, 22363, Sweden.
    Probing the electrode-liquid interface using operando total-reflection X-ray absorption spectroscopy2024Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 748, s. 122538-122538, artikel-id 122538Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Traditional methods to study electrochemical (EC) processes, although successful, are based on current/voltage measurements, providing information about performances rather than offering a direct observation of chemical and structural changes occurring at the electrode surface. These processes are localized at the electrode-electrolyte interface, the structure of which is the main determinant of their behavior, but most surface sensitive experimental techniques are limited to ex situ conditions, owing to the need for an ultra-high vacuum environment. In this contribution, we report operando X-ray absorption spectroscopy in total external reflection geometry (Refle-XAFS) at P64 beamline (DESY, Hamburg), using a simple and versatile EC flow cell designed for multimodal surface sensitive studies with hard X-ray scattering and spectroscopy techniques. We show that the Refle-XAFS method can be used to study chemical surface changes of industrial alloys and model electrodes in harsh electrochemical environments, without being limited to thin film samples. The surface passive film development and breakdown of a corrosion-resistant Ni-Cr-Mo alloy and the electro-oxidation of polycrystalline gold (poly-Au), relevant for fundamental studies on water electrolysis, were investigated. Despite the strong attenuation of the beam by the electrolyte and the PEEK walls of the EC cell, nanoscale surface oxide films were detected using beam energies down to 8 keV. The passivity breakdown region of Ni alloy 59 in 1 M NaCl at pH 7 and pH 12 was identified, showing differences in the composition of the surface oxides during anodic polarization. The electro-oxidation of poly-Au in 0.05 M H2SO4 was observed, showing a progression from two-dimensional Au1+/3+ to three-dimensional thick Au3+ surface oxide/hydroxide during OER.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Braud, N.
    et al.
    Univ Bremen, Inst Solid State Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany..
    Buss, L.
    Brandenburg Univ Technol Cottbus Senftenberg, Appl Phys & Semicond Spect, K Zuse Str 1, D-03046 Cottbus, Germany..
    Lundgren, E.
    Lund Univ, Div Synchrotron Radiat Res, S-22100 Lund, Sweden..
    Merte, L. R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Wallander, H.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Krisponeit, J. -O
    Univ Bremen, Inst Solid State Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany.;Univ Bremen, MAPEX Ctr Mat & Proc, D-28359 Bremen, Germany..
    Locatelli, A.
    Elettra Sincrotrone Trieste SCpA, SS 14,Km 163-5 Area Sci Pk, I-34149 Trieste, Italy..
    Mentes, T. O.
    Elettra Sincrotrone Trieste SCpA, SS 14,Km 163-5 Area Sci Pk, I-34149 Trieste, Italy..
    Jugovac, M.
    Elettra Sincrotrone Trieste SCpA, SS 14,Km 163-5 Area Sci Pk, I-34149 Trieste, Italy..
    Flege, J. I.
    Brandenburg Univ Technol Cottbus Senftenberg, Appl Phys & Semicond Spect, K Zuse Str 1, D-03046 Cottbus, Germany..
    Falta, J.
    Univ Bremen, Inst Solid State Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany.;Univ Bremen, MAPEX Ctr Mat & Proc, D-28359 Bremen, Germany..
    Cleaning and tailoring the Pt3Sn(111) surface for surface experiments2023Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 732, artikel-id 122281Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The cleaning process of the bimetallic Pt3Sn(111) surface has been studied by means of low-energy electron microscopy (LEEM), microspot low-energy electron diffraction (mu.-LEED), and X-ray photoemission electron microscopy (XPEEM). Different cleaning procedures, performed under ultra-high vacuum conditions (UHV), including sputtering with argon ions and repeated cycles of annealing up to 1500 K were investigated. In this work, we show that a clean Pt3Sn(111) surface of high structural quality with a sharp and brilliant (2 x 2) bulk reconstruction in LEED as well as a perfectly smooth surface with terraces of micron size can be achieved by sputtering, annealing at very high temperatures, followed by a subsequent slow (0.09 K/s) and careful cooling procedure. Additionally, we show the possibility of tailoring the Sn concentration in the topmost layers of Pt3Sn(111) as a function of annealing temperature and subsequent cooling rate. Structural changes of the surface are induced by Sn segregation combined with a surface order-disorder transition at 1340 K. Moreover, two new surface reconstructions depending on the cooling rate are reported.

  • 4.
    Wallander, Harald J.
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Division of Synchrotron Radiation Research, Lund University.
    Gajdek, Dorotea
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Division of Synchrotron Radiation Research, Lund University.
    Albertin, Stefano
    Division of Synchrotron Radiation Research, Lund University, Box 118, 22100 Lund, Sweden;NanoLund, Lund University, Box118, 22100 Lund, Sweden.
    Harlow, Gary S.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University; Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, United States.
    Braud, Nicolas
    Institute of Solid-State Physics, University of Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany.
    Buß, Lars
    Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology, Cottbus-Senftenberg, K.-Zuse-Str. 1, Cottbus 03046, Germany.
    Krisponeit, Jon-Olaf
    Institute of Solid-State Physics, University of Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany;MAPEX Center for Materials and Processes, University of Bremen, Bremen 28359, Germany.
    Flege, Jan Ingo
    Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology, Cottbus-Senftenberg, K.-Zuse-Str. 1, Cottbus 03046, Germany.
    Falta, Jens
    Institute of Solid-State Physics, University of Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany;MAPEX Center for Materials and Processes, University of Bremen, Bremen 28359, Germany.
    Lundgren, Edvin
    Division of Synchrotron Radiation Research, Lund University, Box 118, 22100 Lund, Sweden;NanoLund, Lund University, Box118, 22100 Lund, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University.
    Dynamic Behavior of Tin at Platinum Surfaces during Catalytic CO Oxidation2023Ingår i: ACS Catalysis, E-ISSN 2155-5435, Vol. 13, s. 16158-16167Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Platinum–tin surfaces are active for CO oxidation, but their activity and the effects of tin oxide phases that form under reaction conditions are poorly understood. We have studied surface alloys of tin prepared on platinum single crystals during catalytic CO oxidation using near-ambient-pressure X-ray photoemission spectroscopy. On the flat terraces of Sn/Pt(111), a wetting layer of Sn(II) surface oxide forms, while on the stepped Sn/Pt(223) surface, 3D clusters of Sn(IV) oxide are formed. Oxidation of tin by O2 competes with the reduction of the oxides by CO under reaction conditions. Oxides that do not completely cover the surface can be reduced to metallic tin, while a fully covering layer of Sn(II) oxide cannot, showing the importance of oxide edge sites for the reduction process. The samples where 2D oxide layers are formed show a higher CO oxidation activity than for pure platinum at low temperatures, while the Sn(IV) oxide clusters on the stepped surfaces do not affect the measured CO oxidation rate. We therefore identify 2D Sn(II) oxide as an active phase for CO oxidation. While oxide island edges appear to make only minor contributions to conversion under these conditions, reactions at these sites play a major role in determining the phases present and their transformations.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Gericke, Sabrina M.
    et al.
    Division of Combustion Physics, Lund University, 22100 Lund, Sweden.
    Kauppinen, Minttu M.
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden.
    Wagner, Margareta
    Institute of Applied Physics, Technische Universität Wien, 1040 Vienna, Austria.
    Riva, Michele
    Institute of Applied Physics, Technische Universität Wien, 1040 Vienna, Austria.
    Franceschi, Giada
    Institute of Applied Physics, Technische Universität Wien, 1040 Vienna, Austria.
    Posada-Borbón, Alvaro
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden.
    Rämisch, Lisa
    Division of Combustion Physics, Lund University, 22100 Lund, Sweden.
    Pfaff, Sebastian
    Division of Combustion Physics, Lund University, 22100 Lund, Sweden.
    Rheinfrank, Erik
    Institute of Applied Physics, Technische Universität Wien, 1040 Vienna, Austria.
    Imre, Alexander M.
    Institute of Applied Physics, Technische Universität Wien, 1040 Vienna, Austria.
    Preobrajenski, Alexei B.
    MAX IV Laboratory, Lund University, 22100 Lund, Sweden.
    Appelfeller, Stephan
    MAX IV Laboratory, Lund University, 22100 Lund, Sweden.
    Blomberg, Sara
    Department of Chemical Engineering, Lund University, 22100 Lund, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Zetterberg, Johan
    Division of Combustion Physics, Lund University, 22100 Lund, Sweden.
    Diebold, Ulrike
    Institute of Applied Physics, Technische Universität Wien, 1040 Vienna, Austria.
    Grönbeck, Henrik
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden.
    Lundgren, Edvin
    Division of Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden.
    Effect of Different In2O3(111) Surface Terminations on CO2 Adsorption2023Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 15, nr 38, s. 45367-45377Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Mehar, Vikram
    et al.
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Edström, Helen
    Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Shipilin, Mikhail
    Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Hejral, Uta
    Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Wu, Chengjun
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Kadiri, Aravind
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Albertin, Stefano
    Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Hagman, Benjamin
    Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    von Allmen, Kim
    Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Wiegmann, Tim
    Institute of Experimental and Applied Physics, Kiel University, D-24098 Kiel, Germany.
    Pfaff, Sebastian
    Division of Combustion Physics, Lund University, SE-221 00 Lund, Sweden.
    Drnec, Jakub
    Experimental Division, ESRF, 71 Avenue des Martyrs, F-38000 Grenoble, France.
    Zetterberg, Johan
    Division of Combustion Physics, Lund University, SE-221 00 Lund, Sweden.
    Lundgren, Edvin
    Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Gustafson, Johan
    Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Weaver, Jason F.
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Formation of Epitaxial PdO(100) During the Oxidation of Pd(100)2023Ingår i: The Journal of Physical Chemistry Letters, E-ISSN 1948-7185, Vol. 14, nr 38, s. 8493-8499Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The catalytic oxidation of CO and CH4 can be strongly influenced by the structures of oxide phases that form on metallic catalysts during reaction. Here, we show that an epitaxial PdO(100) structure forms at temperatures above 600 K during the oxidation of Pd(100) by gaseous O atoms as well as exposure to O2-rich mixtures at millibar partial pressures. The oxidation of Pd(100) by gaseous O atoms preferentially generates an epitaxial, multilayer PdO(101) structure at 500 K, but initiating Pd(100) oxidation above 600 K causes an epitaxial PdO(100) structure to grow concurrently with PdO(101) and produces a thicker and rougher oxide. We present evidence that this change in the oxidation behavior is caused by a temperature-induced change in the stability of small PdO domains that initiate oxidation. Our discovery of the epitaxial PdO(100) structure may be significant for developing relationships among oxide structure, catalytic activity, and reaction conditions for applications of oxidation catalysis.

  • 7.
    Merte, Lindsay R.
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University, 221 00 Lund, Sweden.
    Braud, Nicolas
    Institute of Solid State Physics, University of Bremen, 28359 Bremen, Germany.
    Buß, Lars
    Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany.
    Bisbo, Malthe Kjær
    Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark.
    Wallander, Harald J.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University, 221 00 Lund, Sweden.
    Krisponeit, Jon-Olaf
    Institute of Solid State Physics, University of Bremen, 28359 Bremen, Germany;MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany.
    Flege, Jan Ingo
    Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany.
    Hammer, Bjørk
    Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark.
    Falta, Jens
    Institute of Solid State Physics, University of Bremen, 28359 Bremen, Germany;MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany.
    Lundgren, Edvin
    NanoLund, Lund University, 221 00 Lund, Sweden;Division of Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden.
    Oxygen Storage by Tin Oxide Monolayers on Pt3Sn(111)2023Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 127, nr 6, s. 2988-2994Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The high performance of platinum–tin catalysts for oxidation reactions has been linked to the formation of tin oxides at the metal surface, but little is known about the structure of these oxides or the chemical behavior that determines their catalytic properties. We show here how surface oxides on Pt3Sn(111) incorporate oxygen at the metal interface, which may be subsequently removed by reaction with CO. The storage mechanism, where oxygen uptake occurs without loss of interfacial Pt–Sn bonds, is enabled by the peculiar asymmetrical coordination state of Sn2+. O atoms are bound at pocket sites in the 2D oxide sheet between these outward-buckled Sn atoms and metallic Sn in the alloy surface below. 

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Gajdek, Dorotea
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University, Box 118, 211 00, Lund, Sweden.
    Jensen, Lucy Idowu Ajakaiye
    Department of Chemical Engineering, Lund University, Box 118, 221 00, Lund, Sweden.
    Briois, Valérie
    Synchrotron SOLEIL, UR1-CNRS, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette Cedex, France.
    Hulteberg, Christian
    Department of Chemical Engineering, Lund University, Box 118, 221 00, Lund, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University, Box 118, 211 00, Lund, Sweden.
    Blomberg, Sara
    NanoLund, Lund University, Box 118, 211 00, Lund, Sweden; Department of Chemical Engineering, Lund University, Box 118, 221 00, Lund, Sweden.
    Sulfidation of Supported Ni, Mo and NiMo Catalysts Studied by In Situ XAFS2023Ingår i: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 66, nr 17-18, s. 1287-1295Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Active sites in Mo-based hydrotreating catalysts are produced by sulfidation. To achieve insights that may enable optimization of the catalysts, this process should be studied in situ. Herein we present a comparative XAFS study where the in situ sulfidation of Mo/δ-Al2O3 and Ni/δ-Al2O3 is compared to that of δ-Al2O3 supported NiMo catalysts with different NiMo ratios. The study also covers the comparison of sulfidation of Ni and Mo using different oxide supports as well as the sulfidation conditions applied in the reactor. The XAFS spectra confirms the oxide phase for all catalysts at the beginning of the sulfidation reaction and their conversion to a sulfidized phase is followed with in situ measurements. Furthermore, it is found that the monometallic catalysts are less readily sulfidized than bimetallic ones, indicating the importance of Ni-Mo interactions for catalyst activation. Mo K-edge XAFS spectra did not show any difference related to the support of the catalyst or the pressure applied during the reaction. Ni K-edge XAFS spectra, however, show a more complete sulfidation of the Ni species in the catalyst when SiO2 is used as a support as compared to the Al2O3. Nevertheless, it is believed that stronger interactions with Al2O3 support prevent sintering of the catalyst which leads to its stabilization. The results contribute to a better understanding of how different parameters affect the formation of the active phase of the NiMo catalysts used in the production of biofuel.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Larsson, Alfred
    et al.
    Lund University Division of Synchrotron Radiation Research Lund 221 00 Sweden.
    Grespi, Andrea
    Lund University Division of Synchrotron Radiation Research Lund 221 00 Sweden.
    Abbondanza, Giuseppe
    Lund University Division of Synchrotron Radiation Research Lund 221 00 Sweden.
    Eidhagen, Josefin
    KTH Royal Institute of Technology Division of Surface and Corrosion Science Stockholm 100 44 Sweden;Alleima (former Sandvik Materials Technology) Sandviken 811 81 Sweden.
    Gajdek, Dorotea
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Simonov, Konstantin
    Swerim AB Department of Materials and Process Development Kista 164 07 Sweden.
    Yue, Xiaoqi
    KTH Royal Institute of Technology Division of Surface and Corrosion Science Stockholm 100 44 Sweden.
    Lienert, Ulrich
    DESY Photon Science 22607 Hamburg Germany.
    Hegedüs, Zoltan
    DESY Photon Science 22607 Hamburg Germany.
    Jeromin, Arno
    Centre for X‐ray and Nano Science (CXNS) Deutsches Elektronen‐Synchrotron DESY 22607 Hamburg Germany.
    Keller, Thomas F.
    Centre for X‐ray and Nano Science (CXNS) Deutsches Elektronen‐Synchrotron DESY 22607 Hamburg Germany;Department of Physics University of Hamburg 22607 Hamburg Germany.
    Scardamaglia, Mattia
    MAX IV Laboratory Lund University Lund 221 00 Sweden.
    Shavorskiy, Andrey
    MAX IV Laboratory Lund University Lund 221 00 Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Pan, Jinshan
    KTH Royal Institute of Technology Division of Surface and Corrosion Science Stockholm 100 44 Sweden.
    Lundgren, Edvin
    Lund University Division of Synchrotron Radiation Research Lund 221 00 Sweden.
    The Oxygen Evolution Reaction Drives Passivity Breakdown for Ni–Cr–Mo Alloys2023Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 35, nr 39Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Corrosion is the main factor limiting the lifetime of metallic materials, and a fundamental understanding of the governing mechanism and surface processes is difficult to achieve since the thin oxide films at the metal-liquid interface governing passivity are notoriously challenging to study. In this work, a combination of synchrotron-based techniques and electrochemical methods is used to investigate the passive film breakdown of a Ni-Cr-Mo alloy, which is used in many industrial applications. This alloy is found to be active toward oxygen evolution reaction (OER), and the OER onset coincides with the loss of passivity and severe metal dissolution. The OER mechanism involves the oxidation of Mo4+ sites in the oxide film to Mo6+ that can be dissolved, which results in passivity breakdown. This is fundamentally different from typical transpassive breakdown of Cr-containing alloys where Cr6+ is postulated to be dissolved at high anodic potentials, which is not observed here. At high current densities, OER also leads to acidification of the solution near the surface, further triggering metal dissolution. The OER plays an important role in the mechanism of passivity breakdown of Ni-Cr-Mo alloys due to their catalytic activity, and this effect needs to be considered when studying the corrosion of catalytically active alloys.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Martin, Natalia M.
    et al.
    Solar Cell Technology, Department of Materials Science and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden.
    Törndahl, Tobias
    Solar Cell Technology, Department of Materials Science and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden.
    Babucci, Melike
    Solar Cell Technology, Department of Materials Science and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden.
    Larsson, Fredrik
    Solar Cell Technology, Department of Materials Science and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden; EVOLAR AB, Uppsala 756 51, Sweden.
    Simonov, Konstantin
    Molecular and Condensed Matter, Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala, Sweden; Department of Materials and Process Development, Swerim AB, P.O. Box 7047, SE-164 07 Kista, Sweden.
    Gajdek, Dorotea
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Rensmo, Håkan
    Molecular and Condensed Matter, Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala, Sweden.
    Platzer-Björkman, Charlotte
    Solar Cell Technology, Department of Materials Science and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden.
    Atomic Layer Grown Zinc–Tin Oxide as an Alternative Buffer Layer for Cu2ZnSnS4-Based Thin Film Solar Cells: Influence of Absorber Surface Treatment on Buffer Layer Growth2022Ingår i: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, nr 11, s. 13971-13980Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Zn1–xSnxOy (ZTO) deposited by atomic layer deposition has shown promising results as a buffer layer material for kesterite Cu2ZnSnS4 (CZTS) thin film solar cells. Increased performance was observed when a ZTO buffer layer was used as compared to the traditional CdS buffer, and the performance was further increased after an air annealing treatment of the absorber. In this work, we study how CZTS absorber surface treatments may influence the chemical and electronic properties at the ZTO/CZTS interface and the reactions that may occur at the absorber surface prior to atomic layer deposition of the buffer layer. For this, we have used a combination of microscopy and synchrotron-based spectroscopies with variable information depths (X-ray photoelectron spectroscopy, high-energy X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy), allowing for an in-depth analysis of the CZTS near-surface regions and bulk material properties. No significant ZTO buffer thickness variation is observed for the differently treated CZTS absorbers, and no differences are observed when comparing the bulk properties of the samples. However, the formation of SnOx and compositional changes observed toward the CZTS surface upon an air annealing treatment may be linked to the modified buffer layer growth. Further, the results indicate that the initial N2 annealing step integrated in the buffer layer growth by atomic layer deposition, which removes Na–COx species from the CZTS surface, may be useful for the ZTO/CZTS device performance. 

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Gericke, Sabrina Maria
    et al.
    Division of Combustion Physics, Lunds University, P.O. Box 118, 221 00 Lund, Sweden.
    Rissler, Jenny
    RISE—Research Institutes of Sweden, P.O. Box 857, 501 15 Borås, Sweden; NanoLund, Lund University, P.O. Box 188, 221 00 Lund, Sweden; Ergonomics and Aerosol Technology, Faculty of Engineering, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
    Bermeo, Marie
    NanoLund, Lund University, P.O. Box 188, 221 00 Lund, Sweden; Solid State Physics, Lund University, 221 00 Lund, Sweden.
    Wallander, Harald J.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Karlsson, Hanna
    Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden.
    Kollberg, Linnéa
    Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden.
    Scardamaglia, Mattia
    MAX IV Laboratory, Lund University, 221 00 Lund, Sweden.
    Temperton, Robert
    MAX IV Laboratory, Lund University, 221 00 Lund, Sweden.
    Zhu, Suyun
    MAX IV Laboratory, Lund University, 221 00 Lund, Sweden.
    Sigfridsson Clauss, Kajsa G. V.
    MAX IV Laboratory, Lund University, 221 00 Lund, Sweden.
    Hulteberg, Christian
    Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden.
    Shavorskiy, Andrey
    MAX IV Laboratory, Lund University, 221 00 Lund, Sweden.
    Merte, Lindsay Richard
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Messing, Maria Elise
    NanoLund, Lund University, P.O. Box 188, 221 00 Lund, Sweden; Solid State Physics, Lund University, 221 00 Lund, Sweden.
    Zetterberg, Johan
    Division of Combustion Physics, Lunds University, P.O. Box 118, 221 00 Lund, Sweden.
    Blomberg, Sara
    Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden.
    In Situ H2 Reduction of Al2O3-Supported Ni- and Mo-Based Catalysts2022Ingår i: Catalysts, E-ISSN 2073-4344, Vol. 12, nr 7, s. 1-15Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nickel (Ni)-promoted Molybdenum (Mo)-based catalysts are used for hydrotreatment processes in the chemical industry where the catalysts are exposed to high-pressure H2 at elevated temperature. In this environment, the catalyst transforms into the active phase, which involves the reduction of the oxide. Here, we report on the first in situ study on the reduction of alumina supported Ni- and Mo-based catalysts in 1 mbar H2 using ambient-pressure X-ray photoelectron spectroscopy (APXPS). The study confirms that mixing Ni and Mo lowers the reduction temperature of both Ni- and Mo-oxide as compared to the monometallic catalysts and shows that the MoO3 reduction starts at a lower temperature than the reduction of NiO in NiMo/Al2O3 catalysts. Additionally, the reduction of Ni and Mo foil was directly compared to the reduction of the Al2O3-supported catalysts and it was observed that the reduction of the supported catalysts is more gradual than the reduction of the foils, indicating a strong interaction between the Ni/Mo and the alumina support.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Albertin, Stefano
    et al.
    Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Lundgren, Edvin
    Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden.
    Martin, Rachel
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Weaver, Jason F.
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Dippel, Ann-Christin
    Deutsches Elektronen-Synchrotron (DESY), 22603 Hamburg, Germany.
    Gutowski, Olof
    Deutsches Elektronen-Synchrotron (DESY), 22603 Hamburg, Germany.
    Hejral, Uta
    Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden.
    Oxidation and Reduction of Ir(100) Studied by High-Energy Surface X-ray Diffraction2022Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 126, nr 11, s. 5244-5255Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The oxidation and reduction of an Ir(100) surface using 2.5, 5, and 10 mbar O2 partial pressure and a sample temperature of 775 K have been studied by using high-energy surface X-ray diffraction (HESXRD) which allowed to record large volumes of reciprocal space in short time periods. The complex 3D diffraction patterns could be disentangled in a stepwise procedure. For the 2.5mbar experiment the measurements indicate the formation of an Ir(100)-O c(2 × 2) oxygen superstructure along with the onset of epitaxial IrO2(110) bulk oxide formation. For the 5 and 10 mbar O2 partial pressures the formation of additional IrO2 bulk oxide epitaxies with (100) and (101) orientations as well as of polycrystalline IrO2 was observed. Upon CO reduction, we found the IrO2 islands to be reduced into epitaxial and metallic Ir(111) and (221) oriented islands.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Wallander, Harald J.
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Division of Synchrotron Radiation Research, Lund University, Box 118, Lund, 22100, Sweden; NanoLund, Lund University, Box 118, Lund, 22100, Sweden.
    Oropeza, Freddy E.
    Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
    Hagman, Benjamin
    Division of Synchrotron Radiation Research, Lund University, Sweden.
    Knudsen, Jan
    Division of Synchrotron Radiation Research, Lund University, Sweden; NanoLund, Lund University, Box 118, 22100 Lund, Sweden;MAX IV Laboratory, Fotongatan 2, 224 84 Lund, Sweden.
    Lundgren, Edvin
    Division of Synchrotron Radiation Research, Lund University, ;NanoLund, Lund University, Lund, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University, Box 118, Lund, 22100, Sweden.
    Oxidation of a Platinum–Tin Alloy Surface during Catalytic CO Oxidation2022Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 126, nr 14, s. 6258-6266Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have investigated the surface composition of a well-ordered Pt3Sn(111) surface during CO oxidation with ambient pressure X-ray photoemission spectroscopy. Oxidation of tin in the surface coincides with the onset of catalytic conversion, and we observe significant differences in the oxidation state and morphology of the oxide formed depending on the gas composition, with an oxygen-rich mixture leading to formation of 2D wetting layers and a CO-rich mixture leading to formation of 3D oxide islands. Spontaneous oscillations in conversion are observed at 300 °C in the oxygen-rich gas mixture and attributed to the combined effects of site blocking by tin oxides and by CO. The results highlight the importance of gas−surface interactions in determining the nature of oxides formed and thus the type and number of interfacial sites under reaction conditions.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Zhang, Chu
    et al.
    Lund Univ, Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden.
    Wang, Baochang
    Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden.
    Hellman, Anders
    Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden.
    Shipilin, Mikhail
    Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden.
    Schaefer, Andreas
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden; Chalmers Univ Technol, Competence Ctr Catalysis, S-41296 Gothenburg, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Blomberg, Sara
    Lund Univ, Dept Chem Engn, Box 124, S-22100 Lund, Sweden.
    Wang, Xueting
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden; Chalmers Univ Technol, Competence Ctr Catalysis, S-41296 Gothenburg, Sweden.
    Carlsson, Per-Anders
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden; Chalmers Univ Technol, Competence Ctr Catalysis, S-41296 Gothenburg, Sweden.
    Lundgren, Edvin
    Lund Univ, Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden.
    Weissenrieder, Jonas
    KTH Royal Inst Technol, Dept Appl Phys, Mat & Nano Phys, S-10044 Stockholm, Sweden.
    Resta, Andrea
    Synchrotron SOLEIL, St Aubin, State Two, France.
    Mikkelsen, Anders
    Lund Univ, Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden.
    Andersen, Jesper N.
    Lund Univ, Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden.
    Gustafson, Johan
    Lund Univ, Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden.
    Steps and catalytic reactions: CO oxidation with preadsorbed O on Rh(553)2022Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 715, artikel-id 121928Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Industrial catalysts are often comprised of nanoparticles supported on high-surface-area oxides, in order to maximise the catalytically active surface area and thereby utilise the active material better. These nanoparticles expose steps and corners that, due to low coordination to neighboring atoms, are more reactive and, as a consequence, are often assumed to have higher catalytic activity. We have investigated the reaction between CO and preadsorbed O on a stepped Rh(553) surface, and show that CO oxidation indeed occurs faster than on the flat Rh(111) surface at the same temperature. However, we do find that this is not a result of reactions at the step sites but rather at the terrace sites close to the steps, due to in-plane relaxation enabled by the step. This insight can provide ways to optimize the shape of the nanoparticles to further improve the activity of certain reactions.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Gajdek, Dorotea
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Olsson, Pär A T
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Division of Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Blomberg, Sara
    NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden;Department of Chemical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Gustafson, Johan
    Division of Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Carlsson, Per-Anders
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden;Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Haase, Dörthe
    MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Lundgren, Edvin
    NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden;Division of Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden.
    Structural Changes in Monolayer Cobalt Oxides under Ambient Pressure CO and O2 Studied by In Situ Grazing-Incidence X-ray Absorption Fine Structure Spectroscopy2022Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 126, nr 7, s. 3411-3418Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have used grazing incidence X-ray absorption fine structure spectroscopy at the cobalt K-edge to characterize monolayer CoO films on Pt(111) under ambient pressure exposure to CO and O2, with the aim of identifying the Co phases present and their transformations under oxidizing and reducing conditions. X-ray absorption near edge structure (XANES) spectra show clear changes in the chemical state of Co, with the 2+ state predominant under CO exposure and the 3+ state predominant under O2-rich conditions. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis shows that the CoO bilayer characterized in ultrahigh vacuum is not formed under the conditions used in this study. Instead, the spectra acquired at low temperatures suggest formation of cobalt hydroxide and oxyhydroxide. At higher temperatures, the spectra indicate dewetting of the film and suggest formation of bulklike Co3O4 under oxidizing conditions. The experiments demonstrate the power of hard X-ray spectroscopy to probe the structures of well-defined oxide monolayers on metal single crystals under realistic catalytic conditions.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Merte, Lindsay R.
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Bisbo, Malthe Kjaer
    Aarhus University: Aarhus Universitet, Department of Physics and Astronomy, DENMARK.
    Sokolović, Igor
    Vienna University of Technology: Technische Universitat Wien, Institute of Applied Physics, AUSTRIA.
    Setvín, Martin
    Charles University: Univerzita Karlova, Department of Surface and Plasma Science, CZECH REPUBLIC.
    Hagman, Benjamin
    Lund University: Lunds Universitet, Division of Synchrotron Radiation Research, SWEDEN.
    Shipilin, Mikhail
    Stockholm University: Stockholms Universitet, Department of Physics, SWEDEN.
    Schmid, Michael
    Vienna Technical University: Technische Universitat Wien, Institute of Applied Physics, AUSTRIA.
    Diebold, Ulrike
    Vienna University of Technology: Technische Universitat Wien, Institute of Applied Physics, AUSTRIA.
    Lundgren, Edvin
    Lund University: Lunds Universitet, Division of Synchrotron Radiation Research, SWEDEN.
    Hammer, Bjørk
    University of Aarhus, Inst. of Physics & Astronomy, Ny Munkegarde, 8000 Aarhus, DENMARK.
    Structure of an Ultrathin Oxide on Pt3Sn(111) Solved by Machine Learning Enhanced Global Optimization2022Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 61, nr 25, s. 1-7Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure-the (4×4) surface oxide on Pt3Sn(111)-based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Larsson, Alfred
    et al.
    Lund Univ, Div Synchrotron Radiat Res, Lund, Sweden.;Lund Univ, NanoLund, Box 118, S-22100 Lund, Sweden..
    D'Acunto, Giulio
    Lund Univ, Div Synchrotron Radiat Res, Lund, Sweden..
    Vorobyova, Mariya
    Lund Univ, Div Synchrotron Radiat Res, Lund, Sweden..
    Abbondanza, Giuseppe
    Lund Univ, NanoLund, Box 118, S-22100 Lund, Sweden..
    Lienert, Ulrich
    DESY Photon Sci, Hamburg, Germany..
    Hegedus, Zoltan
    DESY Photon Sci, Hamburg, Germany..
    Preobrajenski, Alexei
    MAX IV Lab, S-22100 Lund, Sweden..
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Eidhagen, Josefin
    Sandvik Mat Technol, Sandviken, Sweden..
    Delblanc, Anna
    Sandvik Mat Technol, Sandviken, Sweden..
    Pan, Jinshan
    KTH Royal Inst Technol, Div Surface & Corros Sci, Stockholm, Sweden..
    Lundgren, Edvin
    Lund Univ, Div Synchrotron Radiat Res, Lund, Sweden.;Lund Univ, NanoLund, Box 118, S-22100 Lund, Sweden..
    Thickness and composition of native oxides and near-surface regions of Ni superalloys2022Ingår i: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 895, artikel-id 162657Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The surface chemistry and thickness of the native oxide, hydroxide, and modified sub-surface layer of three Ni superalloys (alloy 59, 625, and 718) were determined by synchrotron X-ray Photoelectron Spectroscopy (XPS) and X-ray Reflectivity (XRR). Taking advantage of the synchrotron radiation techniques, a procedure for normalizing the photoelectron intensity was employed, which allowed for accurate quantitative analysis revealing a total oxide thickness for all samples of 12-13 A, a hydroxide layer of 2-3 A, and a thickness of the sub-surface alloy layer of 20-35 A. The thickness results were compared to structural atomic models suggesting that the oxide thickness corresponds to four planes of metal cations in the oxide matrix. The XPS data revealed that the native oxides were enriched in Cr3+, Mo-(4,Mo-5,Mo-6)+, and Nb5+, while no Ni oxide was detected. The hydroxide layer mainly contained Ni2+ and Cr3+ hydroxide. The sub-surface layer was enriched in Ni and depleted in Cr, Fe, Mo, and Nb. The obtained oxide composition can be explained using thermodynamics, and it was found that the oxide composition correlates with the enthalpy of oxide formation for the metal elements in the alloys. Finally, the advantages of synchrotron radiation for composition and thickness determination are discussed.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Martin, Rachel
    et al.
    Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA..
    Kim, Minkyu
    Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea..
    Lee, Christopher J.
    Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA..
    Mehar, Vikram
    Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA..
    Albertin, Stefano
    Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden..
    Hejral, Uta
    Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden..
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Asthagiri, Aravind
    Ohio State Univ, William G Lowrie Chem & Biomol Engn, Columbus, OH 43210 USA..
    Weaver, Jason F.
    Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA..
    Isothermal Reduction of IrO2 (110) Films by Methane Investigated Using In Situ X-ray Photoelectron Spectroscopy2021Ingår i: ACS Catalysis, E-ISSN 2155-5435, Vol. 11, nr 9, s. 5004-5016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Continuous exposure to methane causes IrO2 (110) films on Ir(100) to undergo extensive reduction at temperatures from 500 to 650 K. Measurements using in situ X-ray photoelectron spectroscopy (XPS) confirm that CH4 oxidation on IrO2 (110) converts so-called bridging oxygen atoms (O-br) at the surface to HObr groups while concurrently removing oxygen from the oxide film. Reduction of the IrO2 (110) film by methane is mildly activated as evidenced by an increase in the initial reduction rate as the temperature is increased from 500 to 650 K. The XPS results show that subsurface oxygen efficiently replaces O-br atoms at the IrO2 (110) surface during CH4 oxidation, even after the reduction of multiple layers of the oxide film, and that metallic Ir gradually forms at the surface as well. The isothermal rate of IrO2 (110) reduction by methane decreases continuously as metallic Ir replaces surface IrO2 (110) domains, demonstrating that IrO2 (110) is the active phase for CH4 oxidation under the conditions studied. A key finding is that the replacement of O-br atoms with oxygen from the subsurface is efficient enough to preserve IrO2 (110) domains at the surface and enable CH4 to reduce the similar to 10-layer IrO2 (110) films nearly to completion. In agreement with these observations, density functional theory calculations predict that oxygen atoms in the subsurface layer can replace O-br atoms at rates that are comparable to or higher than the rates at which O-br atoms are abstracted during CH4 oxidation. The efficacy with which oxygen in the bulk reservoir replenishes surface oxygen atoms has implications for understanding and modeling catalytic oxidation processes promoted by IrO2 (110).

  • 19.
    Garcia-Martinez, Fernando
    et al.
    Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastian, Spain.
    Dietze, Elisabeth
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden.
    Schiller, Frederik
    Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastian, Spain.
    Gajdek, Dorotea
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden.
    Gericke, Sabrina M
    Combustion Physics, Lund University, Box 118, 22100 Lund, Sweden.
    Zetterberg, Johan
    Combustion Physics, Lund University, Box 118, 22100 Lund, Sweden.
    Albertin, Stefano
    Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden..
    Lundgren, Edvin
    Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden..
    Grönbeck, Henrik
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden.
    Ortega, J Enrique
    Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastian, Spain; Departamento Física Aplicada, Universidad del País Vasco, 20018 San Sebastian, Spain; Donostia International Physics Centre, 20018 San Sebastian, Spain.
    Reduced Carbon Monoxide Saturation Coverage on Vicinal Palladium Surfaces: the Importance of the Adsorption Site2021Ingår i: The Journal of Physical Chemistry Letters, E-ISSN 1948-7185, Vol. 12, nr 39, s. 9508-9515Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Steps at metal surfaces may influence energetics and kinetics of catalytic reactions in unexpected ways. Here, we report a significant reduction of the CO saturation coverage in Pd vicinal surfaces, which in turn is relevant for the light-off of the CO oxidation reaction. The study is based on a systematic investigation of CO adsorption on vicinal Pd(111) surfaces making use of a curved Pd crystal. A combined X-ray Photoelectron Spectroscopy and DFT analysis allows us to demonstrate that an entire row of atomic sites under Pd steps remains free of CO upon saturation at 300 K, leading to a step-density-dependent reduction of CO coverage that correlates with the observed decrease of the light-off temperature during CO oxidation in vicinal Pd surfaces.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Linpe, Weronica
    et al.
    Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden..
    Ramisch, Lisa
    Lund Univ, Div Combust Phys, SE-22100 Lund, Sweden..
    Abbondanza, Giuseppe
    Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden..
    Larsson, Alfred
    Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden..
    Pfaff, Sebastian
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Lund Univ, Div Combust Phys, SE-22100 Lund, Sweden..
    Jacobse, Leon
    Deutsch Elektronen Synchrotron DESY, Ctr Xray & Nano Sci CXNS, D-22607 Hamburg, Germany..
    Zetterberg, Johan
    Lund Univ, Div Combust Phys, SE-22100 Lund, Sweden..
    Merte, Lindsay
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Stierle, Andreas
    Deutsch Elektronen Synchrotron DESY, Ctr Xray & Nano Sci CXNS, D-22607 Hamburg, Germany.;Univ Hamburg, Fachbereich Phys, D-20355 Hamburg, Germany..
    Hegedues, Zoltan
    Deutsch Elektronen Synchrotron DESY, Photon Sci Div, D-22607 Hamburg, Germany..
    Lienert, Ulrich
    Deutsch Elektronen Synchrotron DESY, Photon Sci Div, D-22607 Hamburg, Germany..
    Lundgren, Edvin
    Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden..
    Harlow, Gary S.
    Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden..
    Revisiting Optical Reflectance from Au(111) Electrode Surfaces with Combined High-Energy Surface X-ray Diffraction2021Ingår i: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 168, nr 9, artikel-id 096511Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have combined high-energy surface X-ray diffraction (HESXRD) with 2D surface optical reflectance (2D-SOR) to perform in situ electrochemical measurements of a Au(111) electrode in 0.1 M HClO4 electrolyte. We show that electrochemically induced changes to Au(111) surface during cyclic voltammetry can be simultaneously observed with 2D-SOR and HESXRD. We discuss how small one atom high 1x1 islands, accommodating excess atoms after the lifting of the surface reconstruction, can lead to discrepancies between the two techniques. The use of HESXRD allows us to simultaneously detect parts of the truncation rods from the (1 x 1) surface termination and the p x root 3 electrochemically induced surface reconstruction, during cyclic voltammetry. The presence of reconstruction phenomena is shown to not depend on having an ideally prepared surface and can in fact be observed after going to very oxidizing potentials. 2D-SOR can also detect the oxidation of the Au surface, however no oxide peaks are detected in the HESXRD signal, which is evidence that any Au oxide is X-ray amorphous.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Garcia-Martinez, Fernando
    et al.
    Centro de Física de Materiales CSIC/UPV-EHU-, Materials Physics Center, Manuel Lardizabal 5, 20018, San Sebastian, Spain.
    Garcia-Fernandez, Carlos
    Centro de Física de Materiales CSIC/UPV-EHU-, Materials Physics Center, Manuel Lardizabal 5, 20018, San Sebastian, Spain.
    Simonovis, Juan Pablo
    National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
    Hunt, Adrian
    National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
    Walter, Andrew
    National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
    Waluyo, Iradwikanari
    National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
    Bertram, Florian
    Department of Physics, Lund University, 221 000, Lund, Sweden.
    Merte, Lindsay R.
    Department of Physics, Lund University, 221 000, Lund, Sweden.
    Shipilin, Mikhail
    Department of Physics, Lund University, 221 000, Lund, Sweden.
    Pfaff, Sebastian
    Department of Physics, Lund University, 221 000, Lund, Sweden.
    Blomberg, Sara
    Department of Chemical Engineering, Lund University, 221 000, Lund, Sweden.
    Zetterberg, Johan
    Department of Physics, Lund University, 221 000, Lund, Sweden.
    Gustafson, Johan
    Department of Physics, Lund University, 221 000, Lund, Sweden.
    Lundgren, Edvin
    Department of Physics, Lund University, 221 000, Lund, Sweden.
    Sanchez-Portal, Daniel
    Centro de Física de Materiales CSIC/UPV-EHU-, Materials Physics Center, Manuel Lardizabal 5, 20018, San Sebastian, Spain.
    Schiller, Frederik
    Centro de Física de Materiales CSIC/UPV-EHU-, Materials Physics Center, Manuel Lardizabal 5, 20018, San Sebastian, Spain.
    Ortega, Enrique
    Centro de Física de Materiales CSIC/UPV-EHU-, Materials Physics Center, Manuel Lardizabal 5, 20018, San Sebastian, Spain; Departamento Física Aplicada I, Universidad del País Vasco, 20018, San Sebastian, Spain; Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain.
    Catalytic oxidation of CO on a curved Pt(111) surface: simultaneous ignition at all facets through a transient CO-O complex.2020Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 59, nr 45, s. 20037-20043Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The catalytic oxidation of carbon monoxide (CO) on transition metals, such as platinum (Pt), is commonly viewed as a sharp transition from the CO-inhibited surface to the active metal, covered with oxygen (O). However, we find that minor amounts of O are present in the CO-poisoned layer that explain why, surprisingly, CO desorbs at stepped and flat Pt crystal planes at once, regardless of the reaction conditions. Using near-ambient pressure X-ray photoemission and a curved Pt(111) crystal we probe the chemical composition at surfaces with variable step density during the CO oxidation reaction. The systematic analysis of carbon and oxygen core levels across the curved crystal reveals that, right before light-off, subsurface O builds up within (111) terraces. This is key to trigger the simultaneous ignition of the catalytic reaction at different Pt surfaces, as indicated by ab-initio theory: a CO-Pt-O complex is formed that equals the CO chemisorption energy at terraces and steps, leading to the abrupt desorption of poisoning CO from all crystal facets at the same temperature.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Garcia-Martinez, Fernando
    et al.
    Centro de Fĺsica de Materiales CSIC, UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, San Sebastian, 20018, Spain.
    Schiller, Frederik
    Centro de Fĺsica de Materiales CSIC, UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, San Sebastian, 20018, Spain.
    Blomberg, Sara
    Synchrotron Radiation Research, Lund University, Lund, 22100, Sweden; Department of Chemical Engineering, Lund University, Lund, 22100, Sweden.
    Shipilin, Mikhail
    Synchrotron Radiation Research, Lund University, Lund, 22100, Sweden; Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, 10691, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Synchrotron Radiation Research, Lund University, Lund, 22100, Sweden.
    Gustafson, Johan
    Synchrotron Radiation Research, Lund University, Lund, 22100, Sweden.
    Lundgren, Edvin
    Synchrotron Radiation Research, Lund University, Lund, 22100, Sweden.
    Enrique Ortega, J.
    Centro de Fĺsica de Materiales CSIC, UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, San Sebastian, 20018, Spain; Departamento Fĺsica Aplicada i, Universidad Del Paĺs Vasco, San Sebastian, 20018, Spain; Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, San Sebastian, 20018, Spain.
    CO Chemisorption on Vicinal Rh(111) Surfaces Studied with a Curved Crystal2020Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 124, nr 17, s. 9305-9313Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Curved crystal surfaces enable the systematic and accurate comparison of physical and chemical processes for a full set of vicinal crystal planes, which are probed in the very same environment. Here, we examine the early stages of the CO chemisorption on vicinal Rh(111) surfaces using a curved Rh crystal that exposes a smoothly variable density of {100} (A-type) and {111} (B-type) steps. We readily identify and quanti step and terrace species by resolving their respective core-level lines using X-ray photoelectron spectroscopy at different locations on the curved surface. Uptake experiments show similar sticking probabilities at all surface planes, subtle asymmetries between A- and B-type steps, and significantly lower saturation coverage at densely stepped surfaces as compared to the (111) plane. The analysis of the C is intensity variation across the curved sample allows us to discuss the adsorption geometry around the step edge.

  • 23.
    Martin, R
    et al.
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Kim, M
    William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
    Lee, C J
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Mehar, V
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    Albertin, S
    Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden.
    Hejral, U
    Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Lundgren, E
    Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden.
    Asthagiri, A
    William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
    Weaver, J F
    Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
    High-Resolution X-ray Photoelectron Spectroscopy of an IrO2(110) Film on Ir(100)2020Ingår i: The Journal of Physical Chemistry Letters, E-ISSN 1948-7185, Vol. 11, nr 17, s. 7184-7189Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-resolution X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) were used to characterize IrO2(110) films on Ir(100) with stoichiometric as well as OH-rich terminations. Core-level Ir 4f and O 1s peaks were identified for the undercoordinated Ir and O atoms and bridging and on-top OH groups at the IrO2(110) surfaces. Peak assignments were validated by comparison of the core-level shifts determined experimentally with those computed using DFT, quantitative analysis of the concentrations of surface species, and the measured variation of the Ir 4f peak intensities with photoelectron kinetic energy. We show that exposure of the IrO2(110) surface to O2 near room temperature produces a large quantity of on-top OH groups because of reaction of background H2 with the surface. The peak assignments made in this study can serve as a foundation for future experiments designed to utilize XPS to uncover atomic-level details of the surface chemistry of IrO2(110).

  • 24.
    Olsson, Pär A T
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Lund Univ, Div Mech, SE-22100 Lund, Sweden..
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Grönbeck, Henrik
    Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden..
    Stability, magnetic order, and electronic properties of ultrathin Fe3O4 nanosheets2020Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 101, nr 15, artikel-id 155426Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the stability, magnetic order, charge segregation, and electronic properties of a novel three-layered Fe3O4 film by means of Hubbard-corrected density functional theory calculations. The stable film is predicted to consist of close-packed iron and oxygen layers, comprising a center layer with octahedrally coordinated Fe sandwiched between two layers with tetrahedrally coordinated Fe. The film exhibits an antiferromagnetic type I spin order. A charge analysis confirms that the stable structure has distinct charge segregation, with Fe2+ ions in the center layer and Fe3+ in the tetrahedral surface layers. Examination of the electronic band structures and densities of states shows that the bandgap is substantially reduced, from 2.4 eV for the bulk rocksalt to 0.3 eV for the film. The reduction in the bandgap is a consequence of the 2+ to 3+ change in oxidation state of Fe in the surface layers.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Merte, Lindsay R
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Olsson, Pär A T
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM). Division of Mechanics, Lund University, Lund, 22100, Sweden.
    Shipilin, Mikhail
    Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden.
    Gustafson, Johan
    Division of Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden.
    Bertram, Florian
    DESY Photon Science, Notkestr. 85, 22607 Hamburg, Germany.
    Zhang, Chu
    Division of Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden.
    Grönbeck, Henrik
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden.
    Lundgren, Edvin
    Division of Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden.
    Structure of two-dimensional Fe3O42020Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 152, nr 11, artikel-id 114705Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have investigated the structure of an ultrathin iron oxide phase grown on Ag(100) using surface x-ray diffraction in combination with Hubbard-corrected density functional theory (DFT+U) calculations. The film exhibits a novel structure composed of one close-packed layer of octahedrally coordinated Fe2+ sandwiched between two close-packed layers of tetrahedrally coordinated Fe3+ and an overall stoichiometry of Fe3O4. As the structure is distinct from bulk iron oxide phases and the coupling with the silver substrate is weak, we propose that the phase should be classified as a metastable two-dimensional oxide. The chemical and physical properties are potentially interesting, thanks to the predicted charge ordering between atomic layers, and analogy with bulk ferrite spinels suggests the possibility of synthesis of a whole class of two-dimensional ternary oxides with varying electronic, optical, and chemical properties.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Albertin, S.
    et al.
    Lund Univ, Div Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden..
    Gustafson, J.
    Lund Univ, Div Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden..
    Zhou, J.
    Lund Univ, Div Combust Phys, SE-22100 Lund, Sweden..
    Pfaff, S.
    Lund Univ, Div Combust Phys, SE-22100 Lund, Sweden..
    Shipilin, M.
    Stockholm Univ, Div Phys Chem, SE-10691 Stockholm, Sweden..
    Blomberg, S.
    Lund Univ, Dept Chem Engn, SE-22100 Lund, Sweden..
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Gutowski, O.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Dippel, A-C
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Zetterberg, J.
    Lund Univ, Div Combust Phys, SE-22100 Lund, Sweden..
    Lundgren, E.
    Lund Univ, Div Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden..
    Hejral, U.
    Lund Univ, Div Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden..
    Surface optical reflectance combined with x-ray techniques during gas-surface interactions2020Ingår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 53, nr 22, artikel-id 224001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High energy surface x-ray diffraction (HESXRD), x-ray reflectivity (XRR), mass spectrometry (MS) and surface optical reflectance (SOR) have been combined to simultaneously obtain sub-second information on the surface structure and morphology from a Pd(100) model catalyst during in situ oxidation at elevated temperatures and pressures resulting in Pd bulk oxide formation. The results show a strong correlation between the HESXRD and SOR signal intensities during the experiment, enabling phase determination and a time-resolved thickness estimation of the oxide by HESXRD, complemented by XRR measurements. The experiments show a remarkable sensitivity of the SOR to changes in the surface phase and morphology, in particular to the initial stages of oxidation/reduction. The data imply that SOR can detect the formation of an ultrathin PdO surface oxide layer of only 2-3 angstrom thickness.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Martin, Rachel
    et al.
    Univ Florida, Chem Engn, Gainesville, FL USA..
    Mehar, Vikram
    Univ Florida, Chem Engn, Gainesville, FL USA..
    Lee, Christopher
    Univ Florida, Chem Engn, Gainesville, FL USA..
    Albertin, Stefano
    Lund Univ, Lund, Sweden..
    Hejral, Uta
    Lund Univ, Lund, Sweden..
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Lundgren, Edvin
    Lund Univ, Lund, Sweden..
    Weaver, Jason
    Univ Florida, Chem Engn, Gainesville, FL USA..
    Methane oxidation on an IrO2(110) film2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 258Artikel i tidskrift (Övrigt vetenskapligt)
  • 28.
    Martin, Natalia M.
    et al.
    Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg, 412 96, Sweden.
    Hemmingsson, Felix
    Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg, 412 96, Sweden.
    Schaefer, Andreas
    Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg, 412 96, Sweden.
    Ek, Martin
    Centre for Analysis and Synthesis, Lund University, Lund, 22100, Sweden.
    Merte, Lindsay R.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Hejral, Uta
    Division of Synchrotron Radiation Research, Lund University, Lund, 22100, Sweden.
    Gustafson, Johan
    Division of Synchrotron Radiation Research, Lund University, Lund, 22100, Sweden.
    Skoglundh, Magnus
    Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg, 412 96, Sweden.
    Dippel, Ann-Christin
    Deutsches Elektronen-Synchrotron DESY, Hamburg, 22607, Germany.
    Gutowski, Olof
    Deutsches Elektronen-Synchrotron DESY, Hamburg, 22607, Germany.
    Bauer, Matthias
    Department of Chemistry, Paderborn University, Paderborn, 33098, Germany.
    Carlsson, Per-Anders
    Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg, 412 96, Sweden.
    Structure-function relationship for CO2 methanation over ceria supported Rh and Ni catalysts under atmospheric pressure conditions2019Ingår i: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 9, nr 7, s. 1644-1653Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In situ structural and chemical state characterization of Rh/CeO2 and Ni/CeO2 catalysts during atmospheric pressure CO2 methanation has been performed by a combined array of time-resolved analytical techniques including ambient-pressure X-ray photoelectron spectroscopy, high-energy X-ray diffraction and diffuse reflectance infrared Fourier transform spectroscopy. The ceria phase is partially reduced during the CO2 methanation and in particular Ce3+ species seem to facilitate activation of CO2 molecules. The activated CO2 molecules then react with atomic hydrogen provided from H-2 dissociation on Rh and Ni sites to form formate species. For the most active catalyst (Rh/CeO2), transmission electron microscopy measurements show that the Rh nanoparticles are small (average 4 nm, but with a long tail towards smaller particles) due to a strong interaction between Rh particles and the ceria phase. In contrast, larger nanoparticles were observed for the Ni/CeO2 catalyst (average 6 nm, with no crystallites below 5 nm found), suggesting a weaker interaction with the ceria phase. The higher selectivity towards methane of Rh/CeO2 is proposed to be due to the stronger metal-support interaction.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 29.
    Hagman, Benjamin
    et al.
    Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund, Sweden.
    Posada-Borbon, Alvaro
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
    Schaefer, Andreas
    Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
    Shipilin, Mikhail
    Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden.
    Zhang, Chu
    Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund, Sweden.
    Merte, Lindsay Richard
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Hellman, Anders
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
    Lundgren, Edvin
    Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund, Sweden.
    Grönbeck, Henrik
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
    Gustafson, Johan
    Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund, Sweden.
    Steps Control the Dissociation of CO2 on Cu(100)2018Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 140, nr 40, s. 12974-12979Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    CO2 reduction reactions, which provide one route to limit the emission of this greenhouse gas, are commonly performed over Cu-based catalysts. Here, we use ambient pressure X-ray photoelectron spectroscopy together with density functional theory to obtain an atomistic understanding of the dissociative adsorption of CO2 on Cu(100). We find that the process is dominated by the presence of steps, which promote both a lowering of the dissociation barrier and an efficient separation between adsorbed O and CO, reducing the probability for recombination. The identification of steps as sites for efficient CO2 dissociation provides an understanding that can be used in the design of future CO2 reduction catalysts.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 30.
    Mehar, Vikram
    et al.
    Department of Chemical Engineering, University of Florida, Gainesville, 32611, FL, United States.
    Kim, Minkyu
    William G. Lowrie Chemical and Biomolecular Engineering, Ohio State University, Columbus, 43210, OH, United States.
    Shipilin, Mikhail
    Division of Synchrotron Radiation Research, Lund University, Lund, SE-22100, Sweden.
    Van den Bossche, Maxime
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
    Gustafson, Johan
    Division of Synchrotron Radiation Research, Lund University, Lund, SE-22100, Sweden.
    Merte, Lindsay Richard
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Hejral, Uta
    Division of Synchrotron Radiation Research, Lund University, Lund, SE-22100, Sweden.
    Grönbeck, Henrik
    Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
    Lundgren, Edvin
    Division of Synchrotron Radiation Research, Lund University, Lund, SE-22100, Sweden.
    Asthagiri, Aravind
    William G. Lowrie Chemical and Biomolecular Engineering, Ohio State University, Columbus, 43210, OH, United States.
    Weaver, Jason F.
    Department of Chemical Engineering, University of Florida, Gainesville, 32611, FL, United States.
    Understanding the Intrinsic Surface Reactivity of Single-Layer and Multilayer PdO(101) on Pd(100)2018Ingår i: ACS Catalysis, E-ISSN 2155-5435, Vol. 8, nr 9, s. 8553-8567Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigated the intrinsic reactivity of CO on single-layer and multilayer PdO(101) grown on Pd(100) using temperature-programmed reaction spectroscopy (TPRS) and reflection absorption infrared spectroscopy (RAIRS) experiments, as well as density functional theory (DFT) calculations. We find that CO binds more strongly on multilayer than single-layer PdO(101) (similar to 119 kJ/mol vs 43 kJ/mol), and that CO oxidizes negligibly on single-layer PdO(101), whereas nearly 90% of a saturated layer of CO oxidizes on multilayer PdO(101) during TPRS experiments. RAIRS further shows that CO molecules adsorb on both bridge-Pd-cus and atop-Pd-cus sites (coordinatively unsaturated Pd sites) of single-layer PdO(101)/Pd(100), while CO binds exclusively on atop-Pd-cus sites of multilayer PdO(101). The DFT calculations reproduce the much stronger binding of CO on multilayer PdO(101), as well as the observed binding site preferences, and reveal that the stronger binding is entirely responsible for the higher CO oxidation activity of multilayer PdO(101)/Pd(100). We show that the O atom below the Pd-cus site, present only on multilayer PdO(101), modifies the electronic states of the Pd-cus, atom in a way that enhances the CO-Pd-cus bonding. Lastly, we show that a precursor -mediated kinetic model, with energetics determined from the present study, predicts that the intrinsic CO oxidation rates achieved on both single-layer and multilayer PdO(101)/Pd(100) can be expected to exceed the gaseous CO diffusion rate to the surface during steady-state CO oxidation at elevated pressures, even though the intrinsic reaction rates are 4-5 orders of magnitude lower on single-layer PdO(101)/Pd(100) than on multilayer PdO(101)/Pd(100).

1 - 30 av 30
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf