Öppna denna publikation i ny flik eller fönster >>
2020 (Engelska) Ingår i: 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), IEEE, 2020Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en] Machine learning research today is dominated by atechnocentric perspective and in many cases disconnected fromthe users of the technology. The machine teaching paradigm insteadshifts the focus from machine learning experts towards thedomain experts and users of machine learning technology. Thisshift opens up for new perspectives on the current use of machinelearning as well as new usage areas to explore. In this study,we apply and map existing machine teaching principles ontoa contextual machine teaching implementation in a commutingsetting. The aim is to highlight areas in machine teaching theorythat requires more attention. The main contribution of this workis an increased focus on available features, the features space andthe potential to transfer some of the domain expert’s explanatorypowers to the machine learning system.
Ort, förlag, år, upplaga, sidor
IEEE, 2020
Nyckelord Machine learning, Machine Teaching, Human in the loop I
Nationell ämneskategori
Datorsystem
Identifikatorer urn:nbn:se:mau:diva-17116 (URN) 10.1109/PerComWorkshops48775.2020.9156132 (DOI) 000612838200047 () 2-s2.0-85091989967 (Scopus ID) 978-1-7281-4716-1 (ISBN)978-1-7281-4717-8 (ISBN)
Konferens PerCom, Workshop on Context and Activity Modeling and Recognition (CoMoReA). March 23-27, 2020. Austin, Texas, USA.
2020-04-232020-04-232024-02-05 Bibliografiskt granskad