The aim of this systematic review was to assess the current scientific evidence of the antimicrobial potential of strontium (Sr) when used to functionalize titanium (Ti) for oral applications. Out of an initial list of 1081 potentially relevant publications identified in three electronic databases (MEDLINE via PubMed, Scopus, and Cochrane) up to 1 February 2021, nine publications based on in vitro studies met the inclusion criteria. The antimicrobial potential of Sr was investigated on different types of functionalized Ti substrates, employing different application methods. Nine studies reported on the early, i.e., 6-24 h, and two studies on the late, i.e., 7-28 days, antimicrobial effect of Sr, primarily against Staphylococcus aureus (S. aureus) and/or Escherichia coli (E. coli). Sr-modified samples demonstrated relevant early antimicrobial potential against S. aureus in three studies; only one of which presented statistical significance values, while the other two presented only the percentage of antimicrobial rate and biofilm inhibition. A relevant late biofilm inhibition potential against S. aureus of 40% and 10%-after 7 and 14 days, respectively-was reported in one study. Combining Sr with other metal ions, i.e., silver (Ag), zinc (Zn), and fluorine (F), demonstrated a significant antimicrobial effect and biofilm inhibition against both S. aureus and E. coli. Sr ion release within the first 24 h was generally low, i.e., below 50 mu g/L and 0.6 ppm; however, sustained Sr ion release for up to 30 days, while maintaining up to 90% of its original content, was also demonstrated. Thus, in most studies included herein, Sr-functionalized Ti showed a limited immediate (i.e., 24 h) antimicrobial effect, likely due to a low Sr ion release; however, with an adequate Sr ion release, a relevant antimicrobial effect, as well as a biofilm inhibition potential against S. aureus-but not E. coli-was observed at both early and late timepoints. Future studies should assess the antimicrobial potential of Ti functionalized with Sr against multispecies biofilms associated with peri-implantitis.