Malmö University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Vasiliu, Alina
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
    Interactions of constituents of topical formulations with skin microbiota: Effects of propylene glycol on relevant skin microbiota isolates2023Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    One of the lesser explored research areas is the influence factors such as personal care products, cosmetics, and everyday routines have on skin microbiota. This study investigated the effects of propylene glycol, a widely used ingredient in cosmetics and self-care products, on a staphylococcal system ubiquitously distributed on human skin. The system, comprised of Staphylococcus hominis, Staphylococcus epidermidis, and Staphylococcus aureus, comes from a healthy donor, devoid of any skin afflictions. Because Staphylococcus aureus is part of this microbial community, it was of great interest to contribute to the understanding of the manner in which its growth is kept in check.

    To fulfill this task, a new methodology was developed. Purposely intended to be facile and easily scalable in laboratories around the world, it can be used for the study of microbial systems of variable dimensions alone or with the complementary use of other methods.

    Results indicate that the effects of propylene glycol are complex, as it acts on the skin, the resident microbiota, and at the microbiota-skin interface. Commensals such as Staphylococcus hominis and Staphylococcus epidermidis seem to have synergy of action with propylene glycol, increasing each other’s power in reducing the number of viable colonies of Staphylococcus aureus. Lastly, results seem to also reveal the incompletely understood role of Staphylococcus hominis on human skin. While Staphylococcus epidermidis and Staphylococcus aureus ravenously compete with each other, it is the contribution of Staphylococcus hominis that seems to limit the latter’s overgrowing. This speaks volumes of the extent, complexities, and unknowns of microbial interactions.

    Download full text (pdf)
    fulltext
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf