Publikationer från Malmö universitet
Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Afonso, Damien
    et al.
    Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
    Valetti, Sabrina
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces. Nanologica AB, Södertälje, SE-151 36, Sweden.
    Fraix, Aurore
    Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, Catania, 95125, Italy.
    Bascetta, Claudia
    Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, Catania, 95125, Italy.
    Petralia, Salvatore
    STMicroelectronics, Stradale Primosole 50, Catania, I-95121, Italy.
    Conoci, Sabrina
    STMicroelectronics, Stradale Primosole 50, Catania, I-95121, Italy.
    Feiler, Adam
    Nanologica AB, Södertälje, 151 36, Sweden; Surface and Corrosion Science, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.
    Sortino, Salvatore
    Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, Catania, 95125, Italy.
    Multivalent mesoporous silica nanoparticles photodelivering nitric oxide with carbon dots as fluorescent reporters2017Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Amino-terminated mesoporous silica nanoparticles embedding carbon dots (MSCD) formed by calcination were functionalized with a nitric oxide (NO) photodonor (1) to give a robust MSCD-1 conjugate. The intense fluorescence of MSCDs was strongly quenched in MSCD-1 by effective energy transfer. Visible light excitation of MSCD-1 liberates NO, suppresses the energy transfer mechanism and leads to concomitant fluorescence restoration of the MSCD scaffold, which acts as an optical reporter for the released NO. The MSCD-1 hybrid is also able to encapsulate the highly hydrophobic photosensitizer temoporfin, preserving the fluorescence reporting function.

  • 2.
    Sotres, Javier
    et al.
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Boyd, Hannah
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Gonzalez-Martinez, Juan F
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Enabling autonomous scanning probe microscopy imaging of single molecules with deep learning2021Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 13, nr 20, s. 9193-9203Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Scanning probe microscopies allow investigating surfaces at the nanoscale, in real space and with unparalleled signal-to-noise ratio. However, these microscopies are not used as much as it would be expected considering their potential. The main limitations preventing a broader use are the need of experienced users, the difficulty in data analysis and the time-consuming nature of experiments that require continuous user supervision. In this work, we addressed the latter and developed an algorithm that controlled the operation of an Atomic Force Microscope (AFM) that, without the need of user intervention, allowed acquiring multiple high-resolution images of different molecules. We used DNA on mica as a model sample to test our control algorithm, which made use of two deep learning techniques that so far have not been used for real time SPM automation. One was an object detector, YOLOv3, which provided the location of molecules in the captured images. The second was a Siamese network that could identify the same molecule in different images. This allowed both performing a series of images on selected molecules while incrementing the resolution, as well as keeping track of molecules already imaged at high resolution, avoiding loops where the same molecule would be imaged an unlimited number of times. Overall, our implementation of deep learning techniques brings SPM a step closer to full autonomous operation.

    Fulltekst (pdf)
    fulltext
  • 3.
    Träger, Andrea
    et al.
    KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden.
    Pendergraph, Samuel A.
    KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden.
    Pettersson, Torbjörn
    KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; KTH Royal Institute of Technology, Wallenberg Wood Science Centre, Teknikringen 56, SE-110 44 Stockholm.
    Halthur, Tobias
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). CR Competence AB, Lund, SE-221 00, Sweden.
    Nylander, Tommy
    Department of Physical Chemistry, Lund University, SE-221 00 Lund, Sweden.
    Carlmark, Anna
    KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden.
    Wågberg, Lars
    KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; KTH Royal Institute of Technology, Wallenberg Wood Science Centre, Teknikringen 56, SE-110 44 Stockholm.
    Strong and tuneable wet adhesion with rationally designed layer-by-layer assembled triblock copolymer films2016Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 8, nr 42, s. 18204-18211Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    this study the wet adhesion between Layer-by-Layer (LbL) assembled films of triblock copolymer micelles was investigated. Through the LbL assembly of triblock copolymer micelles with hydrophobic, low glass transition temperature (T-g) middle blocks and ionic outer blocks, a network of energy dissipating polymer chains with electrostatic interactions serving as crosslinks can be built. Four triblock copolymers were synthesized through Atom Transfer Radical Polymerisation (ATRP). One pair had a poly(2-ethyl-hexyl methacrylate) middle block with cationic or anionic outer blocks. The other pair contained the same ionic outer blocks but poly(n-butyl methacrylate) as the middle block. The wet adhesion was evaluated with colloidal probe AFM. To our knowledge, wet adhesion of the magnitude measured in this study has not previously been measured on any polymer system with this technique. We are convinced that this type of block copolymer system grants the ability to control the geometry and adhesive strength in a number of nano-and macroscale applications.

  • 4.
    Wojciechowski, Jonathan P.
    et al.
    School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre for Convergent Bio-Nano Science & Technology, University of New South Wales, Sydney, NSW 2052, Australia.
    Martin, Adam D.
    Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, 2109, NSW, Australia.
    Du, Eric Y.
    School of Chemistry, Australian Centre for Nanomedicine, ARC Centre for Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, 2052, NSW, Australia.
    Garvey, Christopher J.
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces. Australian Nuclear Science and Technology Organisation, New Illawara Rd, Lucas Heights, 2231, NSW, Australia; Lund Institute for Advanced Neutron and X-ray Scattering, Lund, Sweden.
    Nordon, Robert E.
    Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, 2052, NSW, Australia.
    Thordarson, Pall
    School of Chemistry, Australian Centre for Nanomedicine, ARC Centre for Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, 2052, NSW, Australia.
    Non-reversible heat-induced gelation of a biocompatible Fmoc-hexapeptide in water2020Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 12, nr 15, s. 8262-8267Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hydrogel materials which respond to changes in temperature are widely applicable for injectable drug delivery or tissue engineering applications. Here, we report the unsual heat-induced gelation behaviour of a low molecular weight gelator based on an Fmoc-hexapeptide, Fmoc-GFFRGD. We show that Fmoc-GFFRGD forms kinetically stable fibres when mixed with divalent cations (e.g. Ca2+). Gelation of the mixture occurs upon heating of the mixture which enables electrostatic screening by the divalent cations and hydrophobic collapse of the fibres to give a self-supporting hydrogel network that shows good biocompatibility with L929 fibroblast cells. This work highlights a unique mechanism to initiate heat-induced gelation which should find opportunities as a gelation trigger for injectable hydrogels or fundamental self-assembly applications.

1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf