Malmö University Publications
2021222324252623 of 988
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AI-Generated Cyberattacks: Threats and Security Strategies for Small and Medium-Sized Enterprises
Malmö University, Faculty of Technology and Society (TS).
Malmö University, Faculty of Technology and Society (TS).
2025 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The rapid rise of generative artificial intelligence (AI) is reshaping the cyber-threat landscape, enabling attackers to automate, personalise, and scale intrusions. Small and medium-sized enterprises (SMEs), which compose over 90% of global businesses, lack the financial and human resources of large organisations and are therefore uniquely exposed to these AI-driven threats. Existing research has focused largely on AI threats to critical infrastructure and larger enterprises, leaving SME-specific vulnerabilities and counter-measures under-explored. We combined a literature review with semi-structured expert interviews. Themes were identified directly from the data and findings were triangulated to ensure alignment between academic literature and expert perspectives. Generative AI-enhanced phishing emerged as the most pervasive threat against SMEs. The most feasible defences for SMEs are continuous employee awareness training, multi-factor authentication (MFA), Security-as-a-Service (SECaaS) for advanced monitoring and simplified adoption of frameworks such as the NIST AI Risk-Management Profile. By aligning technical safeguards with human-centred training, SMEs can achieve a proportionate yet robust security posture against generative-AI attacks.

Abstract [sv]

Den snabba utvecklingen av generativ artificiell intelligens (AI) omformar landskapet för cyberhot genom att möjliggöra automatisering, personalisering och uppskalning av intrång. Små och medelstora företag (SMF), som utgör över 90 % av världens företag, saknar de ekonomiska och personella resurser som större organisationer har, och är därmed särskilt sårbara för dessa AI-drivna hot. Befintlig forskning har huvudsakligen fokuserat på AI-relaterade hot mot kritisk infrastruktur och större företag, vilket innebär att SMF-specifika sårbarheter och motåtgärder hittills har varit bristfälligt utforskade. I denna studie kombinerades en litteraturstudie med semistrukturerade expertintervjuer. Teman identifierades direkt utifrån det empiriska materialet, och resultaten triangulerades för att säkerställa överensstämmelse mellan den akademiska litteraturen och experternas perspektiv. Generativ AI-förstärkt nätfiske framträdde som det mest utbredda hotet mot SMF. De mest genomförbara skyddsåtgärderna för SMF inkluderar kontinuerlig medarbetarutbildning i säkerhetsmedvetenhet, flerfaktorsautentisering (MFA), Security-as-a-Service (SECaaS) för avancerad övervakning samt förenklad implementering av ramverk såsom NIST:s AI Risk Management Profile. Genom att samordna tekniska skyddsåtgärder med människocentrerad utbildning kan SMF uppnå en proportionerlig men robust säkerhetsnivå mot generativ AI-baserade attacker.

Place, publisher, year, edition, pages
2025. , p. 49
Keywords [en]
Generative AI, Cybersecurity, Small and Medium-Sized Enterprises (SMEs)
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:mau:diva-78533OAI: oai:DiVA.org:mau-78533DiVA, id: diva2:1981365
Educational program
TS Systemutvecklare
Presentation
2025-06-05, Nordenskiöldsgatan 1, Malmö, 08:00 (English)
Supervisors
Examiners
Available from: 2025-07-04 Created: 2025-07-03 Last updated: 2025-07-04Bibliographically approved

Open Access in DiVA

fulltext(647 kB)16 downloads
File information
File name FULLTEXT02.pdfFile size 647 kBChecksum SHA-512
d4e711a291e3323c819fca3e54bf5a9c11bef9258c3c5fe59f0a5ebad06dfedf4e229de04bfc562563d14fae0255f51c63c2cfe1f6fffe7ed11777ed6ef0f79e
Type fulltextMimetype application/pdf

By organisation
Faculty of Technology and Society (TS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 24 hits
2021222324252623 of 988
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf