Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy disaggregation risk resilience through microaggregation and discrete Fourier transform
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Department of Computer Science, University of Ilorin, Ilorin, Nigeria.ORCID-id: 0000-0002-0155-7949
Department of Computing Science, Umeå University, Sweden.
2024 (engelsk)Inngår i: Information Sciences, ISSN 0020-0255, E-ISSN 1872-6291, Vol. 662, artikkel-id 120211Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Progress in the field of Non-Intrusive Load Monitoring (NILM) has been attributed to the rise in the application of artificial intelligence. Nevertheless, the ability of energy disaggregation algorithms to disaggregate different appliance signatures from aggregated smart grid data poses some privacy issues. This paper introduces a new notion of disclosure risk termed energy disaggregation risk. The performance of Sequence-to-Sequence (Seq2Seq) NILM deep learning algorithm along with three activation extraction methods are studied using two publicly available datasets. To understand the extent of disclosure, we study three inference attacks on aggregated data. The results show that Variance Sensitive Thresholding (VST) event detection method outperformed the other two methods in revealing households' lifestyles based on the signature of the appliances. To reduce energy disaggregation risk, we investigate the performance of two privacy-preserving mechanisms based on microaggregation and Discrete Fourier Transform (DFT). Empirically, for the first scenario of inference attack on UK-DALE, VST produces disaggregation risks of 99%, 100%, 89% and 99% for fridge, dish washer, microwave, and kettle respectively. For washing machine, Activation Time Extraction (ATE) method produces a disaggregation risk of 87%. We obtain similar results for other inference attack scenarios and the risk reduces using the two privacy-protection mechanisms.

sted, utgiver, år, opplag, sider
Elsevier, 2024. Vol. 662, artikkel-id 120211
Emneord [en]
Smart meters, Smart grid, Disclosure risk, Non-intrusive load monitoring, Data privacy, Microaggregation, Discrete Fourier transform
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-66922DOI: 10.1016/j.ins.2024.120211ISI: 001178010000001Scopus ID: 2-s2.0-85183847925OAI: oai:DiVA.org:mau-66922DiVA, id: diva2:1854563
Tilgjengelig fra: 2024-04-26 Laget: 2024-04-26 Sist oppdatert: 2024-04-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Adewole, Kayode Sakariyah

Søk i DiVA

Av forfatter/redaktør
Adewole, Kayode Sakariyah
Av organisasjonen
I samme tidsskrift
Information Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 8 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf