Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In Situ Mapping of Phase Evolutions in Rapidly Heated Zr-Based Bulk Metallic Glass with Oxygen Impurities
Malmö University, Faculty of Technology and Society (TS), Department of Materials Science and Applied Mathematics (MTM).ORCID iD: 0009-0007-8282-8336
Uppsala Univ, Div Mat Phys, Dept Phys & Astron, Box 530, SE-75121 Uppsala, Sweden..
Uppsala Univ, Div Mat Phys, Dept Phys & Astron, Box 530, SE-75121 Uppsala, Sweden..
Uppsala Univ, Div Solar Cell Technol, Dept Mat Sci & Engn, Angstrom Solar Ctr, S-75121 Uppsala, Sweden..
Show others and affiliations
2024 (English)In: Advanced Science, E-ISSN 2198-3844, Vol. 11, no 16Article in journal (Refereed) Published
Abstract [en]

Metallic glasses exhibit unique mechanical properties. For metallic glass composites (MGC), composed of dispersed nanocrystalline phases in an amorphous matrix, these properties can be enhanced or deteriorated depending on the volume fraction and size distribution of the crystalline phases. Understanding the evolution of crystalline phases during devitrification of bulk metallic glasses upon heating is key to realizing the production of these composites. Here, results are presented from a combination of in situ small- and wide-angle X-ray scattering (SAXS and WAXS) measurements during heating of Zr-based metallic glass samples at rates ranging from 102 to 104 Ks-1 with a time resolution of 4ms. By combining a detailed analysis of scattering experiments with numerical simulations, for the first time, it is shown how the amount of oxygen impurities in the samples influences the early stages of devitrification and changes the dominant nucleation mechanism from homogeneous to heterogeneous. During melting, the oxygen rich phase becomes the dominant crystalline phase whereas the main phases dissolve. The approach used in this study is well suited for investigation of rapid phase evolution during devitrification, which is important for the development of MGC. Oxygen impurities impact on phase-transformations during rapid heating of Zr-based metallic glass Zr59.3Cu28.8Al10.4Nb1.5 is thoroughly investigated using a multi-technique approach. During devitrification, the extracted phase evolutions reveal that the phase fraction hierarchy correlates with the oxygen impurity concentration. Numerical simulations with a heterogeneous nucleation mode capture the experimental observations. During melting, the oxygen-rich phase becomes the dominant phase. image

Place, publisher, year, edition, pages
John Wiley & Sons, 2024. Vol. 11, no 16
Keywords [en]
additive manufacturing, AMLOY-ZR01, classical nucleation and growth theory, small-angle X-ray scattering, wide-angle X-ray scattering, transmission electron microscopy
National Category
Physical Sciences Materials Engineering
Identifiers
URN: urn:nbn:se:mau:diva-66914DOI: 10.1002/advs.202307856ISI: 001174897700001PubMedID: 38419373Scopus ID: 2-s2.0-85186239722OAI: oai:DiVA.org:mau-66914DiVA, id: diva2:1854489
Available from: 2024-04-25 Created: 2024-04-25 Last updated: 2024-10-09Bibliographically approved
In thesis
1. Quantitative characterization of nanosized precipitate distributions in glassy alloys
Open this publication in new window or tab >>Quantitative characterization of nanosized precipitate distributions in glassy alloys
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Many material properties of alloys are strongly influenced by the precipitation of secondary phases in the bulk material. Traditional alloys have been polycrystalline, but over the years many types of advanced alloys have been obtained by precise tailoring of microstructure. One of these advanced alloys is the metallic glass, which is obtained by rapid quenching of a liquid into a metastable amorphous solid. The lack of long-range ordering in this phase has been shown to yield remarkable material properties such as extremely high yield strength and high corrosion resistance. One drawback of the amorphous phase is that it is very brittle and critical failure caused by a heterogeneous dislocation density is common. At the frontier of research on glassy-type alloys are the nanocrystalline composite alloys, where a controlled dispersion of nanosized crystallites is allowed to form by controlled heat treatment of the alloy system, yielding even more refined material properties. For example, alloys with high ductility and high strength, tunable corrosion resistance, or excellent soft-magnetic properties have been obtained. Regardless of whether the alloy is glassy, nanocrystalline, or polycrystalline, engineering of the microstructure is key, but far from trivial. A theoretical method well suited for simulating distributions of precipitates on a continuum scale is the classical nucleation and growth theory (CNGT), where the statistical precipitate population within a unit volume can be simulated. To quantitatively study colloid distributions of precipitates experimentally, small-angle scattering (SAS) is an advantageous method.This licentiate thesis is based on two research papers on precipitation in glassy alloys. Paper I is about oxygen-induced, unwanted, crystallization in the commercially available glassy alloy AMLOY-ZR01 (Zr  Cu  Al  Nb  ). Using X-ray characterization tech- niques and CNGT, the impact on phase transformations of this hard, ductility-deteriorating phase was investigated at various oxygen concentrations during rapid heating. The oxygen concentration is shown to be strongly correlated with the phase-formation hierarchy. This study thoroughly elucidates how oxygen impurities affect the devitrification of Zr-based bulk metallic glass (BMG), which is one of the main obstacles in overcoming the pro- cessing of BMG with additive manufacturing (AM). Paper II focuses on the analysis of SAS data from X-rays (SAXS) using the indirect Fourier-based model fitting approach. A method for separating model parameters is implemented and thoroughly benchmarked toward the standard method. A reduced computational wall time is obtained while the parameter precision is maintained. The Fourier-based model is found to inherently suffer from parameter correlations, and large discrepancies to the true values are observed when the intensity peak in the signal is not well defined. Based on the obtained results, a program called pySASA, which is built with parallelization using message passing interface to rapidly fit large batches of data, is presented. The solution structure around which this program is built can be one of the keys to keeping the full model analysis of SAS datarelevant in the future.

Abstract [sv]

En legering är en blandning av atomslag som innehåller minst en metall. De flesta av de legeringar vi använder i vardagen är polykristallina, vilket innebär att bulkmaterialet består av domäner av en eller flera typer av ordnade metalliska strukturer, s.k. faser. Många materialegenskaper hos legeringar är starkt påverkade av utfällningar av faser i bulkma- terialet. Den vetenskapliga disciplin som beskriver fenomenet om hur, och varför, faser bildas kallas for fastransformation (eng. Phase transformation) och är en av huvudpelarna i materialutveckling. På sistone har glasmetaller dykt upp som en ny typ av avancerade material, där den amorfa fasen hos legeringen har uppvisat häpnadsväckande materialegen- skaper. Några utmärkande av dessa egenskaper är; extrem hårdhet, högt korrosionmotstånd, samt stor kapacitet för lagring av elastisk energi. Synnerligen lovande användning av det metalliska glaset är i nanokristallina kompositlegeringar, där en kontrollerad mängd av kristallin fas i nanostorlek tillåts att bildas i en amorfa matris, vilket leder till ytterligare förfinade materialegenskaper. Några praktiska tillämpningar för dessa kompositlegeringar är magnetiska metaller med hög prestanda vilket är viktigt för den gröna omställningen vi står inför, samt som biomedicinska implantat som löses upp när till exempel ett ben har läkt. Oavsett om legeringen är amorf, nanokristallin, eller polykristallin är förmågan att kunna kontrollera mikrostrukturen nyckeln, vilket är långt ifrån trivialt. En väl lämpad metod för att simulera distributioner av utfällningar är klassisk kärnbildning och tillväxtteori (eng. classical nucleation and growth theory) (CNGT). Den har en stark koppling till den Svenske forskaren Svante Arrhenius (1859-1927) observationer om hur en reaktions hastighet är relaterad till dess aktiveringsenergi. För att kvantitativt studera fördelningar av utfällningar experimentellt är det fördelaktigt att använda sig av småvinkelspridning (eng. small-angle scattering) (SAS). I denna metod så utnyttjas röntgenstrålning (SAXS) eller neutronstrålning (SANS) för att studera partikelfördelningar på en nano- till mikro-skala i en volym utan att förstöra provetDenna licentiatuppsats är baserad på två forskningsartiklar om utfällningar i glaslegeringar. Den första artikeln handlar om oönskad kristallisering, inducerad av syreorenheter, i en kommersiellt tillgänglig glaslegering. Med hjälp av primärt röntgenkarakterisering och CNGT, undersöks hur en duktilitetsreducerande fas påverkar fastransformationer under snabb uppvärmning. Den andra artikeln fokuserar på analysen av SAXS-data med modell- passning. Baserat på resultaten från analysen i detta arbete presenteras ett program kallatpySASA vilket är skräddarsytt för att snabbt och enkelt kunna behandla stora mängder avexperimentell data.

Place, publisher, year, edition, pages
Malmö: Malmö University Press, 2024. p. 43
Series
Studies in Applied Physics ; 3
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:mau:diva-71496 (URN)10.24834/isbn.9789178775279 (DOI)978-91-7877-526-2 (ISBN)978-91-7877-527-9 (ISBN)
Presentation
2024-10-18, A0606 Niagara, Malmö University, 10:15 (English)
Opponent
Supervisors
Note

Paper II in dissertation as manuscript.

Paper II in dissertation as manuscript not included in the fulltext online.

Available from: 2024-10-07 Created: 2024-10-07 Last updated: 2024-10-30Bibliographically approved

Open Access in DiVA

fulltext(4795 kB)129 downloads
File information
File name FULLTEXT01.pdfFile size 4795 kBChecksum SHA-512
df7a3b8c849592eddb7f8032f797f9248ab202f03f4e9bcb9805dd1c6effa65225ef29290e20098cfc9367bff1b42f19a82b927c3fe03d50ab884684ce241c85
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Tidefelt, MattiasFisk, Martin

Search in DiVA

By author/editor
Tidefelt, MattiasFisk, Martin
By organisation
Department of Materials Science and Applied Mathematics (MTM)
In the same journal
Advanced Science
Physical SciencesMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 129 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 372 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf