Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ART4FL: An Agent-Based Architectural Approach for Trustworthy Federated Learning in the IoT
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-8025-4734
School of Information Technology, Halmstad University,Halmstad,Sweden.
Birzeit University,Department of Computer Science,Palestine.
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0003-0326-0556
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: 2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), Institute of Electrical and Electronics Engineers (IEEE), 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The integration of the Internet of Things (IoT) and Machine Learning (ML) technologies has opened up for the development of novel types of systems and services. Federated Learning (FL) has enabled the systems to collaboratively train their ML models while preserving the privacy of the data collected by their IoT devices and objects. Several FL frameworks have been developed, however, they do not enable FL in open, distributed, and heterogeneous IoT environments. Specifically, they do not support systems that collect similar data to dynamically discover each other, communicate, and negotiate about the training terms (e.g., accuracy, communication latency, and cost). Towards bridging this gap, we propose ART4FL, an end-to-end framework that enables FL in open IoT settings. The framework enables systems' users to configure agents that participate in FL on their behalf. Those agents negotiate and make commitments (i.e., contractual agreements) to dynamically form federations. To perform FL, the framework deploys the needed services dynamically, monitors the training rounds, and calculates agents' trust scores based on the established commitments. ART4FL exploits a blockchain network to maintain the trust scores, and it provides those scores to negotiating agents' during the federations' formation phase.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2023.
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:mau:diva-63749DOI: 10.1109/fmec59375.2023.10306036ISI: 001103180200036Scopus ID: 2-s2.0-85179515213ISBN: 979-8-3503-1697-1 (digital)ISBN: 979-8-3503-1698-8 (tryckt)OAI: oai:DiVA.org:mau-63749DiVA, id: diva2:1813229
Konferens
2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), Tartu, Estonia, 18-20 September 2023
Tillgänglig från: 2023-11-20 Skapad: 2023-11-20 Senast uppdaterad: 2023-12-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Alkhabbas, FahedSpalazzese, RominaDavidsson, Paul

Sök vidare i DiVA

Av författaren/redaktören
Alkhabbas, FahedSpalazzese, RominaDavidsson, Paul
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)Internet of Things and People (IOTAP)
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 88 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf