Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Activity Recognition and User Preference Learning for Automated Configuration of IoT Environments
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0003-0998-6585
2020 (Engelska)Ingår i: IoT '20: Proceedings of the 10th International Conference on the Internet of Things, New York, United States: ACM Digital Library, 2020, s. 1-8, artikel-id 3Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Internet of Things (IoT) environments encompass different types of devices and objects that offer a wide range of services. The dynamicity and uncertainty of those environments, including the mobility of users and devices, make it hard to foresee at design time available devices, objects, and services. For the users to benefit from such environments, they should be proposed services that are relevant to the specific context and can be provided by available things. Moreover, environments should be configured automatically based on users' preferences. To address these challenges, we propose an approach that leverages Artificial Intelligence techniques to recognize users' activities and provides relevant services to support users to perform their activities. Moreover, our approach learns users' preferences and configures their environments accordingly by dynamically forming, enacting, and adapting goal-driven IoT systems. In this paper, we present a conceptual model, a multi-tier architecture, and processes of our approach. Moreover, we report about how we validated the feasibility and evaluated the scalability of the approach through a prototype that we developed and used.

Ort, förlag, år, upplaga, sidor
New York, United States: ACM Digital Library, 2020. s. 1-8, artikel-id 3
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Identifikatorer
URN: urn:nbn:se:mau:diva-36986DOI: 10.1145/3410992.3411003ISBN: 978-1-4503-8758-3 (tryckt)OAI: oai:DiVA.org:mau-36986DiVA, id: diva2:1504048
Konferens
IoT '20: 10th International Conference on the Internet of Things, Malmö Sweden 6-9 October, 2020
Tillgänglig från: 2020-11-26 Skapad: 2020-11-26 Senast uppdaterad: 2023-07-05Bibliografiskt granskad
Ingår i avhandling
1. Realizing Emergent Configurations in the Internet of Things
Öppna denna publikation i ny flik eller fönster >>Realizing Emergent Configurations in the Internet of Things
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The Internet of Things (IoT) is a fast-spreading technology that enables new types of services in several domains such as transportation, health, and building automation. To exploit the potential of the IoT effectively, several challenges have to be tackled, including the following ones that we study in this thesis. First, the proposed IoT visions provide a fragmented picture, leading to a lack of consensus about IoT systems and their constituents. To piece together the fragmented picture of IoT systems, we systematically identified their characteristics by analyzing existing taxonomies. More specifically, we identified seventeen characteristics of IoT systems, and grouped them into two categories, namely, elements and quality aspects of IoT systems. Moreover, we conducted a survey to identify the factors that drive the deployment decisions of IoT systems in practice. A second set of challenges concerns the environment of IoT systems that is often dynamic and uncertain. For instance, due to the mobility of users and things, the set of things available in users' environment might change suddenly. Similarly, the status of IoT systems’ deployment topologies (i.e., the deployment nodes and their interconnections) might change abruptly. Moreover, environmental conditions monitored and controlled through IoT devices, such as ambient temperature and oxygen levels, might fluctuate suddenly. The majority of existing approaches to engineer IoT systems rely on predefined processes to achieve users’ goals. Consequently, such systems have significant shortcomings in coping with dynamic and uncertain environments. To address these challenges, we used the concept of Emergent Configurations (ECs) to engineer goal-driven IoT systems. An EC is an IoT system that consists of a dynamic set of things that cooperate temporarily to achieve a user goal. To realize ECs, we proposed an abstract architectural approach, comprising an architecture and processes, as well as six novel approaches that refine the abstract approach. The developed approaches support users to achieve their goals seamlessly in arbitrary environments by enabling the dynamic formation, deployment, enactment, and self-adaptation of IoT systems. The approaches exploit different techniques and focus on different aspects of ECs. Moreover, to better support users in dynamic and uncertain environments, we investigated the automated configuration of those environments based on users' preferences. 

Ort, förlag, år, upplaga, sidor
Malmö: Malmö universitet, 2020. s. 254
Serie
Studies in Computer Science ; 12
Nyckelord
Internet of Things, Emergent Configurations, Goal-driven IoT Systems, Automated Configuration of IoT environments, Software Architectures, Self-adaptive Systems.
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:mau:diva-18508 (URN)10.24834/isbn.9789178771226 (DOI)978-91-7877-121-9 (ISBN)978-91-7877-122-6 (ISBN)
Disputation
2020-12-18, Digitalt, 10:00 (Engelska)
Opponent
Handledare
Projekt
Emergent Configurations for IoT Systems – ECOS+
Tillgänglig från: 2020-10-06 Skapad: 2020-10-06 Senast uppdaterad: 2021-10-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextJournal website

Person

Alkhabbas, FahedAlawadi, SadiSpalazzese, RominaDavidsson, Paul

Sök vidare i DiVA

Av författaren/redaktören
Alkhabbas, FahedAlawadi, SadiSpalazzese, RominaDavidsson, Paul
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)Internet of Things and People (IOTAP)
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 73 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf