Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Player Experience Evaluation of Level Generators in the Mario AI Framework
Malmö högskola, Fakulteten för teknik och samhälle (TS).ORCID-id: 0000-0002-2644-2785
2016 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
2016.
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-18164OAI: oai:DiVA.org:mau-18164DiVA, id: diva2:1463457
Tilgjengelig fra: 2020-09-02 Laget: 2020-09-02 Sist oppdatert: 2022-06-27bibliografisk kontrollert
Inngår i avhandling
1. Patterns and procedural content generation in digital games: automatic level generation for digital games using game design patterns
Åpne denne publikasjonen i ny fane eller vindu >>Patterns and procedural content generation in digital games: automatic level generation for digital games using game design patterns
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The development of content in digital games, such as game worlds, quests, levels, 3D-models, and textures, is costly and time consuming. To address this, different approaches to automate the process of creating game content, often referred to as procedural content generation (PCG), has been suggested. However, PCG is a complex task and include challenges such as creating content with variation, coherent style, speed, and correctness. The research in the thesis is concerned with generating game content with the aid of game design patterns, both by establishing models and exploring different methods to generate actual game content for different games. The methods include implementations of evolutionary computation, i.e. a set of search-based approaches that searches for instances of game design patterns on different abstraction levels that make up Super Mario Bros. (SMB) levels and a learning algorithm implementation based on a model (n-grams) of patterns from the original SMB-game. The different generators were evaluated with metrics concerned with the expressive range of the generators and with user tests.

sted, utgiver, år, opplag, sider
Malmö university, Faculty of Technology and Society, 2016. s. 269
Serie
Studies in Computer Science ; 2
Emneord
Procedural Content Generation, Search-based, Genetic Algorithms, Digital Games, Design Patterns
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-7775 (URN)20371 (Lokal ID)978-91-7104-684-0 (ISBN)978-91-7104-685-7 (ISBN)20371 (Arkivnummer)20371 (OAI)
Disputas
2016-06-10, Niagara, NI:B0E15, Malmö, 13:00 (engelsk)
Opponent
Tilgjengelig fra: 2020-02-28 Laget: 2020-02-28 Sist oppdatert: 2022-06-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Dahlskog, Steve

Søk i DiVA

Av forfatter/redaktør
Dahlskog, Steve
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 158 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf