Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transparent and Capacitive Bioanode Based on Specifically Engineered Glucose Oxidase
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Show others and affiliations
2016 (English)In: Electroanalysis, ISSN 1040-0397, E-ISSN 1521-4109, Vol. 28, no 6, p. 1290-1297Article in journal (Refereed)
Abstract [en]

Here the authors detail an optimized transparent capacitive glucose oxidizing bioanode, capable of supplying current densities of 10 μA cm-​2 at applied potentials of 0.1 V-​0.2 V vs. SCE, when continuously performing in a simple phosphate buffer, pH 7.4 and artificial human tears, both with a glucose concn. of 0.05 mM only. When operating in pulse mode, the bioanode was able to deliver current densities ≤21 μA cm-​2 at the beginning of the pulse with 571 μC cm-​2 total charges stored. The biogenic part of the enzymic device was a recombinant glucose oxidase mutant from Penicillium amagasakiense with high catalytic efficiency towards glucose, up to 14.5x104 M-​1 s-​1. The nonbiogenic part of the anodic system was based on a poly(3,​4-​ethylenedioxythiophene)​-​graphene nanocomposite, as a highly capacitive component with a capacitance d. in the 1 mF cm-​2 range, multi-​walled carbon nanotubes, as an addnl. nanostructuring element, and a conductive org. complex, as an electron shuttle between the redox enzyme and the electrode surface. The bioanode could potentially serve as a prototype of a double-​function enzymic anode for hybrid elec. power biodevices, energizing smart contact lenses.

Place, publisher, year, edition, pages
John Wiley & Sons, 2016. Vol. 28, no 6, p. 1290-1297
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-5404DOI: 10.1002/elan.201600096ISI: 000379039000011Scopus ID: 2-s2.0-84963815432Local ID: 21935OAI: oai:DiVA.org:mau-5404DiVA, id: diva2:1402264
Available from: 2020-02-28 Created: 2020-02-28 Last updated: 2024-02-05Bibliographically approved
In thesis
1. Flexible and transparent biological electric power sources based on nanostructured electrodes
Open this publication in new window or tab >>Flexible and transparent biological electric power sources based on nanostructured electrodes
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]

Portabel medicinteknisk utrustning framträder alltmer som en av de mest lovande metoderna för vårdövervakning och personlig behandling. Förebyggande vård och hantering av kroniska sjukdomar är resurskrävande och en överföring av det konventionella sjukhuscentrerade sjukvårdssystemet till ett individcentrerat vårdsystem skulle vara samhällsekonomiskt gynnsam. I ett sådant scenario representerar bärbara mätenheter en teknik för övervakning av patienter på ett icke-invasivt och lättanvänt sätt. Denna teknik har möjlighet att tillhandahålla långsiktiga hälsostatusövervakningar och förmedla realtidsdata som läkare kan analysera för att ge patienterna återkoppling utan att behöva träffa patienterna lika ofta. Dessutom är många utan kroniska sjukdomar också intresserade av att övervaka kroppens hälsotillstånd för att förhindra sjukdomar och uppnå en högre livskvalitet. Dagens bärbara enheter integrerar elektronik med låg strömförbrukning och trådlös teknik, s.k. ”low power wireless technology”, för att överföra information från enheten till en mottagare. Elektronik behöver tillförlitliga strömkällor för att säkerställa funktionen, och biologiska kraftkällor är särskilt lämpliga alternativ att använda i bärbara enheter, eftersom de har hög prestanda när de används under fysiologiska förhållanden. Olika biologiska kraftkällor har tillverkats och testats i denna avhandling. Materialen som används för att tillverka dem är transparenta och flexibla. Dessa två egenskaper bidrar starkt till användarvänligheten och ökar därmed benägenheten att använda sådana kraftkällor. De biologiska kraftkällorna omvandlar kemisk energi till elektrisk energi genom att oxidera glukos och reducera syre under förhållanden som liknar dem som föreligger i mänsklig tårvätska. Detta arbete bidrar till att öka kunskapen om flexibla, transparenta och nanostrukturerade material som används för tillverkning av biologiska kraftkällor.

Abstract [en]

The thesis is focused on biological electric power sources based on transparent and flexible nanostructured electrodes. The power generating part of these biodevices was decorated with different biomaterials electrically wired to transparent electrodes based on either thin gold films, or indium tin oxide. Planar electrodes were additionally nanostructured by applying different nanomaterials to the electrode surfaces (such as indium tin oxide nanoparticles, graphene, carbon nanotubes) or by using nanoimprint lithography to increase the real surface area and thus boost enzyme loading. Bilirubin oxidase was used a cathodic biocatalyst for oxygen electroreduction, whereas different biomaterials were exploited as anodic bioelements, viz. redox enzymes (cellobiose and glucose dehydrogenase, as well as glucose oxidases) and thylakoid membranes, for glucose electrooxidation and light harvesting, respectively. Charge-storing parts of biodevices were based on electroconducting polymers, e.g. poly(3,4-ethylenedioxythiophene), carbon nanotubes, graphene, and indium tin oxide nanoparticles. The bioelectrodes were characterised in detail electrochemically, and also using scanning electron microscopy and atomic force microscopy. Transparent, membrane-free enzymatic fuel cells, as well as chemical and solar biosupercapacitors were assembled and basic parameters of biodevices, viz. open-circuit voltages, power and charge density, as well as stability, were studied in continuous and pulse operating modes.

Place, publisher, year, edition, pages
Malmö university, Faculty of Health and Society, 2018. p. 72
Series
Malmö University Health and Society Dissertations, ISSN 1653-5383 ; 3
Keywords
Biocatalysis, Biological fuel cells, Biosupercapacitors, Flexible biodevice, Solar biosupercapacitor, Enzymatic fuel cell, Indium tin oxide, Conducting polymer, Non-invasive, Smart contact lens, Sciences
National Category
Medical and Health Sciences Biomedical Laboratory Science/Technology
Identifiers
urn:nbn:se:mau:diva-7349 (URN)10.24834/2043/24919 (DOI)24919 (Local ID)9789171048288 (ISBN)9789171048295 (ISBN)24919 (Archive number)24919 (OAI)
Available from: 2020-02-28 Created: 2020-02-28 Last updated: 2020-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Gonzalez-Arribas, ElenaPankratov, DmitryBlum, ZoltanShleev, Sergey

Search in DiVA

By author/editor
Gonzalez-Arribas, ElenaPankratov, DmitryBlum, ZoltanShleev, Sergey
By organisation
Department of Biomedical Science (BMV)
In the same journal
Electroanalysis
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf