Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Miniature direct electron transfer based enzymatic fuel cell operating in human sweat and saliva
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Malmö högskola, Faculty of Odontology (OD).
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Show others and affiliations
2014 (English)In: Fuel Cells, ISSN 1615-6846, E-ISSN 1615-6854, Vol. 14, no 6, p. 1050-1056Article in journal (Refereed) Published
Abstract [en]

We present data on operation of a miniature membrane-less, direct electron transfer based enzymatic fuel cell in human sweat and saliva. The enzymatic fuel cell was fabricated following our previous reports on miniature biofuel cells, utilizing gold nanoparticle modified gold microwires with immobilized cellobiose dehydrogenase and bilirubin oxidase. The following average characteristics of miniature glucose/oxygen biodevices operating in human sweat and saliva, respectively, were registered: 580 and 560 mV open-circuit voltage, 0.26 and 0.1 μW cm–2 power density at a cell voltage of 0.5 V, with up to ten times higher power output at 0.2 V. When saliva collected after meal ingestion was used, roughly a two-fold increase in power output was obtained, with a further two-fold increase by addition of 500 μM glucose. Likewise, the power generated in sweat at 0.5 V increased two-fold by addition of 500 μM glucose.

Place, publisher, year, edition, pages
John Wiley & Sons, 2014. Vol. 14, no 6, p. 1050-1056
Keywords [en]
Enzymatic Fuel Cell, Microscale, Non-Invasive, Saliva, Sweat
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-4923DOI: 10.1002/fuce.201400037ISI: 000346019800033Scopus ID: 2-s2.0-84918588577Local ID: 18129OAI: oai:DiVA.org:mau-4923DiVA, id: diva2:1401758
Available from: 2020-02-28 Created: 2020-02-28 Last updated: 2024-02-05Bibliographically approved
In thesis
1. Direct electron transfer based biofuel cells: operating in vitro and in vivo
Open this publication in new window or tab >>Direct electron transfer based biofuel cells: operating in vitro and in vivo
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]

I vår moderna värd är vi väldigt beroende av elektrisk energi som vi använder för det mesta i får vardag: för att lysa upp våra hus, generera värme, driva våra datorer och mobiltelefoner och mycket mer. Produktion av elektrisk energi har dock ofta en negativ på-verkan på vår miljö. Ett alternativt sätt att producera elektrik energi är att använda sig av bränsleceller, vilka kan liknas vid öppna batterier som ständigt kan förses med nytt bränsle och således inte behöver bytas ut efter ett tag. Bränslet som används kan väljas så att dess förbrukning inte innebär någon negativ påverkan på miljön. Den här avhandlingen fokuserar sig på en viss typ av bränsleceller, där man använder sig av specifika proteiner, enzymer, för att omvandla energi från bränslet till elektrisk energi. Som bränsle kan vanligt förekommande kolhydrater, dvs. socker, samt syre användas. Socker och syre används även av vår kropp för att skapa energi, och genom att använda sig av rätt sorts enzymer kan även bränsleceller använda sig av dessa ämnen för att producera elektrisk energi. Således är det möjligt för dessa bränsleceller att producera elektrisk energi placerade inuti oss. Dessa biobränsleceller kan sedan användas för att driva t.ex. olika sensorer direkt i vår kropp som kontinuerligt skulle kunna ge information till sjukvården, utan att använda sig av batterier som behöver bytas ut. Avhandlingen är baserad på att undersöka hur olika bränsleceller som använder sig av enzym fungerar samt att testa dem i olika mänskliga kroppsvätskor samt även inuti levande organismer. Genom att öka förståelsen för detta är förhoppningen att bränsleceller baserade på enzym inom en inte allt för avlägsen framtid kan finna tillämpningar som elektriska försörjare för t.ex. självförsörjande biomedicinska sensorer.

Abstract [en]

The focus of this thesis is the development and design of direct electron transfer based enzymatic fuel cells, with the possible use in biomedical applications. For biodevice fabrication, macro- and micro-scaled nanostructured gold electrodes were fabricated and characterized in detail, employing electrochemical techniques, as well as atomic force microscopy and scanning electron microscopy. The nanostructured electrodes were utilized together with suitable (bio)catalysts to achieve efficient catalysis of suitable biofuel and biooxidant. Oxygen was utilized as biooxidant, employing the enzyme bilirubin oxidase together with nanostructured electrodes to achieve efficient bioelectrocatalysis. The mechanism of bioelectrocatalytic reduction of oxygen by bilirubin oxidase was investigated in detail utilizing electrochemical techniques combined with quantum mechanic/molecular mechanic modeling. Carbohydrates were utilized as the main biofuel in most of the studies, by employing cellobiose dehydrogenase immobilized on nanostructured electrodes. Additionally, tetracyanoquinodimethane and tetrathiafulvalene were employed as efficient catalysts of ascorbate. The performance of assembled enzymatic fuel cells were in-vestigated in vitro in complex buffers and human physiological fluids, as well as in vivo evaluated using different electrochemical techniques.

Place, publisher, year, edition, pages
Malmö University, Faculty of Health and Society, 2014. p. 60
Series
Malmö University Health and Society Dissertations, ISSN 1653-5383 ; 1
Keywords
biofuel cell, direct electron transfer, enzymes, gold nanoparticles, implantable biomedical devices
National Category
Natural Sciences
Identifiers
urn:nbn:se:mau:diva-7313 (URN)16111 (Local ID)978-91-7104-529-4 (ISBN)978-91-7104-530-0 (ISBN)16111 (Archive number)16111 (OAI)
Note

Note: The papers are not included in the fulltext online.

Paper VI in dissertation as manuscript.

Available from: 2020-02-28 Created: 2020-02-28 Last updated: 2024-03-13Bibliographically approved

Open Access in DiVA

fulltext(445 kB)175 downloads
File information
File name FULLTEXT01.pdfFile size 445 kBChecksum SHA-512
feedb7451d6307f2c918d4d7aa16e9bd311441ed2309218e7d4e79ea5997b12c9572aae6c25cfb507aca1966f9293d83af2b539cb5383ca0ee1600e6f7872436
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Falk, MagnusPankratov, DmitryLindh, LiselottArnebrant, ThomasShleev, Sergey

Search in DiVA

By author/editor
Falk, MagnusPankratov, DmitryLindh, LiselottArnebrant, ThomasShleev, Sergey
By organisation
Department of Biomedical Science (BMV)Faculty of Odontology (OD)
In the same journal
Fuel Cells
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 175 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf