Publikationer från Malmö universitet
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deep Learning Sensor-fusion-based odometry for autonomous robot navigation
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
2024 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Odometry estimation plays a key role in facilitating autonomous navigation systems. While significant consideration has been devoted to research on monocular odometry estimation, sensor fusion techniques for Stereo Visual Odometry (SVO) have been relatively neglected due to their demanding computational requirements, posing practical challenges. However, recent advancements in hardware, particularly the integration of CPUs with dedicated artificial intelligence units, have alleviated these concerns. This thesis explores the enhancement of autonomous robot navigation through the integration of attention mechanisms with stereo images, particularly in environments where GPS signals are unreliable or absent. The core of this study is the development of a novel sensor fusion model that utilizes one image as a means of calculating attention weights for another image, and combine the result with inertial data to improve odometry estimates. A set of ablation experiments was conducted with different architectures and sensor fusion to find the best setup, using the KITTI dataset. The results demonstrate the effectiveness of our proposed methods, particularly the use of early fusion techniques and attention mechanisms, which significantly enhance the accuracy of navigation paths relative to the ground truth. Furthermore, we compared our Stereo Attention-based Visual Inertial Odometry model (SATVIO) to state-of-the-art to demonstrate its performance. Despite limitations that restricted extensive training, our findings suggest that, with further optimization and extended training, SATVIO could match or surpass current state-of-the-art approaches in visual inertial odometry.

Ort, förlag, år, upplaga, sidor
2024. , s. 43
Nyckelord [en]
Stereo Visual Inertial Odometry, Sensor Fusion, Deep Learning, Attention Mechanism
Nationell ämneskategori
Datavetenskap (datalogi) Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:mau:diva-69714OAI: oai:DiVA.org:mau-69714DiVA, id: diva2:1880957
Utbildningsprogram
TS Computer Science: Applied Data Science
Handledare
Examinatorer
Tillgänglig från: 2024-07-25 Skapad: 2024-07-02 Senast uppdaterad: 2024-07-25Bibliografiskt granskad

Open Access i DiVA

fulltext(11571 kB)32 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 11571 kBChecksumma SHA-512
6c33a16d8480519aad9a6cb105ca0fd2e53ca5a99464ab892779b03342d284e98eb84173e3ef53cfda979bb16cfd9da7ac6f36d452f9eb35be88f4d86c33f1bb
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Doorshi, Raoof
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)
Datavetenskap (datalogi)Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 32 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 83 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf