Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
PRIMϵ: Novel Privacy-preservation Model with Pattern Mining and Genetic Algorithm
Department of Computer Science, Indian Institute of Information Technology Kottayam (IIITK), Kottayam, Kerala, India.
Department of Computer Science, Indian Institute of Information Technology Kottayam (IIITK), Kottayam, Kerala, India.ORCID-id: 0000-0003-0381-2138
Department of Computer Science, Indian Institute of Information Technology Kottayam (IIITK), Kottayam, Kerala, India.ORCID-id: 0000-0002-4514-3916
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-2763-8085
2024 (engelsk)Inngår i: IEEE Transactions on Information Forensics and Security, ISSN 1556-6013, E-ISSN 1556-6021, Vol. 19, s. 571-585Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper proposes a novel agglomerated privacy-preservation model integrated with data mining and evolutionary Genetic Algorithm (GA). Privacy-pReservIng with Minimum Epsilon (PRIMϵ) delivers minimum privacy budget (ϵ) value to protect personal or sensitive data during data mining and publication. In this work, the proposed Pattern identification in the Locale of Users with Mining (PLUM) algorithm, identifies frequent patterns from dataset containing users’ sensitive data. ϵ-allocation by Differential Privacy (DP) is achieved in PRIMϵ with GA PRIMϵ , yielding a quantitative measure of privacy loss (ϵ) ranging from 0.0001 to 0.045. The proposed model maintains the trade-off between privacy and data utility with an average relative error of 0.109 on numerical data and an Earth Mover’s Distance (EMD) metric in the range between [0.2,1.3] on textual data. PRIMϵ model is verified with Probabilistic Computational Tree Logic (PCTL) and proved to accept DP data only when ϵ ≤ 0.5. The work demonstrated resilience of model against background knowledge, membership inference, reconstruction, and privacy budget attack. PRIMϵ is compared with existing techniques on DP and is found to be linearly scalable with worst time complexity of O(n log n) .

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2024. Vol. 19, s. 571-585
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-63769DOI: 10.1109/tifs.2023.3324769ISI: 001123966000038Scopus ID: 2-s2.0-85174806720OAI: oai:DiVA.org:mau-63769DiVA, id: diva2:1813393
Tilgjengelig fra: 2023-11-20 Laget: 2023-11-20 Sist oppdatert: 2024-01-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Malekian, Reza

Søk i DiVA

Av forfatter/redaktør
Jose, Arun CyrilSahoo, JayakrushnaMalekian, Reza
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Information Forensics and Security

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 50 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf