Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
EEG-Based Emotion Recognition Using an Improved Weighted Horizontal Visibility Graph
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Key Laboratory of Underwater Acoustic Signal Processing, Ministry of Education, Southeast University, Nanjing 210096, China.
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Key Laboratory of Underwater Acoustic Signal Processing, Ministry of Education, Southeast University, Nanjing 210096, China.
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Key Laboratory of Underwater Acoustic Signal Processing, Ministry of Education, Southeast University, Nanjing 210096, China.
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Key Laboratory of Underwater Acoustic Signal Processing, Ministry of Education, Southeast University, Nanjing 210096, China.
Vise andre og tillknytning
2021 (engelsk)Inngår i: Sensors, E-ISSN 1424-8220, Vol. 21, nr 5, artikkel-id 1870Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Emotion recognition, as a challenging and active research area, has received considerable awareness in recent years. In this study, an attempt was made to extract complex network features from electroencephalogram (EEG) signals for emotion recognition. We proposed a novel method of constructing forward weighted horizontal visibility graphs (FWHVG) and backward weighted horizontal visibility graphs (BWHVG) based on angle measurement. The two types of complex networks were used to extract network features. Then, the two feature matrices were fused into a single feature matrix to classify EEG signals. The average emotion recognition accuracies based on complex network features of proposed method in the valence and arousal dimension were 97.53% and 97.75%. The proposed method achieved classification accuracies of 98.12% and 98.06% for valence and arousal when combined with time-domain features.

sted, utgiver, år, opplag, sider
MDPI, 2021. Vol. 21, nr 5, artikkel-id 1870
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-41571DOI: 10.3390/s21051870ISI: 000628551400001PubMedID: 33800116Scopus ID: 2-s2.0-85102087461OAI: oai:DiVA.org:mau-41571DiVA, id: diva2:1541950
Tilgjengelig fra: 2021-04-06 Laget: 2021-04-06 Sist oppdatert: 2023-10-05bibliografisk kontrollert

Open Access i DiVA

fulltext(2283 kB)230 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2283 kBChecksum SHA-512
ac3c296b589306accf3b2784acacab3dfe211b2956a181264900fc88f035f31734e988a23680d05efadb96c24c66a643bc2e4e12504558716b27af8b36de7eeb
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Malekian, Reza

Søk i DiVA

Av forfatter/redaktør
Malekian, Reza
Av organisasjonen
I samme tidsskrift
Sensors

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 230 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 46 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf