Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Semantic-Based Belief Network Construction Approach in IoT
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
2020 (engelsk)Inngår i: Sensors, E-ISSN 1424-8220, Vol. 20, nr 20, artikkel-id E5747Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Uncertainty is intrinsic in most of the complex systems, especially when the systems have to interact with the physical environment; therefore, handling uncertainty is critical in the Internet of Things (IoT). In this paper, we propose a semantic-based approach to build the belief network in IoT systems to handle the uncertainties. Semantics is the functionality description of any system component. Semantic Match mechanisms can construct the appropriate structures to compare the consistency between different sources of data based on the same functionality. In the approach, we define the belief property of every system component and develop the related algorithms to update the belief value. Furthermore, the related mechanisms and algorithms for data fusion and fault detection based on the belief property are described to explain how the approach works in the IoT systems. Several simulation experiments are used to evaluate the proposed approach, and the results indicate that the approach can work as expected. More accurate data are fused from the inaccurate devices and the fault in one node is automatically detected.

sted, utgiver, år, opplag, sider
MDPI, 2020. Vol. 20, nr 20, artikkel-id E5747
Emneord [en]
belief, data fusion, fault detection, internet of things, self adaptation, uncertainty
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-18781DOI: 10.3390/s20205747ISI: 000585564800001PubMedID: 33050402Scopus ID: 2-s2.0-85092439234OAI: oai:DiVA.org:mau-18781DiVA, id: diva2:1478817
Tilgjengelig fra: 2020-10-23 Laget: 2020-10-23 Sist oppdatert: 2024-02-05bibliografisk kontrollert

Open Access i DiVA

fulltext(1869 kB)103 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1869 kBChecksum SHA-512
97fa171ec19f51c51f322eb77dac0a57e8ef6aaf6efbe747da04e8484d80201313c429c2b12904a746cd074dead73eb340f360ed4a3aef0e7869eac41c24763d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Dong, Yuji

Søk i DiVA

Av forfatter/redaktør
Dong, Yuji
Av organisasjonen
I samme tidsskrift
Sensors

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 103 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 48 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf