Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A survey and taxonomy on intelligent surveillance from a system perspective
Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0003-0998-6585
Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-9471-8405
2018 (engelsk)Inngår i: Knowledge engineering review (Print), ISSN 0269-8889, E-ISSN 1469-8005, Vol. 33, artikkel-id e4Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Recent proliferation of surveillance systems is mostly attributed to advances in both image-processing techniques and hardware enhancement of smart cameras, as well as the ubiquity of sensor-driven architectures. Owing to these capabilities, new aspects are coming to the forefront. This paper addresses the current state-of-the-art and provides researchers with an overview of existing surveillance solutions, analyzing their properties as a system and drawing attention to relevant challenges when developing, deploying and managing them. Also, some of the more prominent application domains are highlighted here. In an effort to understand the development of the advanced solutions, based on their most distinctive characteristics, we propose a taxonomy for surveillance systems to help classify them and reveal gaps in existing research. We conclude by identifying promising future research lines.

sted, utgiver, år, opplag, sider
Cambridge University Press, 2018. Vol. 33, artikkel-id e4
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-16040DOI: 10.1017/S0269888918000048ISI: 000450970900001Scopus ID: 2-s2.0-85060530281Lokal ID: 25003OAI: oai:DiVA.org:mau-16040DiVA, id: diva2:1419562
Tilgjengelig fra: 2020-03-30 Laget: 2020-03-30 Sist oppdatert: 2024-02-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopushttps://www.cambridge.org/core/journals/knowledge-engineering-review/article/survey-and-taxonomy-on-intelligent-surveillance-from-a-system-perspective/806CA2982C64CF685044831A7FF6A2A5

Person

Mihailescu, Radu-CasianDavidsson, PaulEklund, UlrikPersson, Jan A.

Søk i DiVA

Av forfatter/redaktør
Mihailescu, Radu-CasianDavidsson, PaulEklund, UlrikPersson, Jan A.
Av organisasjonen
I samme tidsskrift
Knowledge engineering review (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 34 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf