Publikationer från Malmö universitet
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deep Learning Sensor-fusion-based odometry for autonomous robot navigation
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
2024 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Odometry estimation plays a key role in facilitating autonomous navigation systems. While significant consideration has been devoted to research on monocular odometry estimation, sensor fusion techniques for Stereo Visual Odometry (SVO) have been relatively neglected due to their demanding computational requirements, posing practical challenges. However, recent advancements in hardware, particularly the integration of CPUs with dedicated artificial intelligence units, have alleviated these concerns. This thesis explores the enhancement of autonomous robot navigation through the integration of attention mechanisms with stereo images, particularly in environments where GPS signals are unreliable or absent. The core of this study is the development of a novel sensor fusion model that utilizes one image as a means of calculating attention weights for another image, and combine the result with inertial data to improve odometry estimates. A set of ablation experiments was conducted with different architectures and sensor fusion to find the best setup, using the KITTI dataset. The results demonstrate the effectiveness of our proposed methods, particularly the use of early fusion techniques and attention mechanisms, which significantly enhance the accuracy of navigation paths relative to the ground truth. Furthermore, we compared our Stereo Attention-based Visual Inertial Odometry model (SATVIO) to state-of-the-art to demonstrate its performance. Despite limitations that restricted extensive training, our findings suggest that, with further optimization and extended training, SATVIO could match or surpass current state-of-the-art approaches in visual inertial odometry.

sted, utgiver, år, opplag, sider
2024. , s. 43
Emneord [en]
Stereo Visual Inertial Odometry, Sensor Fusion, Deep Learning, Attention Mechanism
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-69714OAI: oai:DiVA.org:mau-69714DiVA, id: diva2:1880957
Utdanningsprogram
TS Computer Science: Applied Data Science
Veileder
Examiner
Tilgjengelig fra: 2024-07-25 Laget: 2024-07-02 Sist oppdatert: 2024-07-25bibliografisk kontrollert

Open Access i DiVA

fulltext(11571 kB)32 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 11571 kBChecksum SHA-512
6c33a16d8480519aad9a6cb105ca0fd2e53ca5a99464ab892779b03342d284e98eb84173e3ef53cfda979bb16cfd9da7ac6f36d452f9eb35be88f4d86c33f1bb
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Doorshi, Raoof
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 32 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 83 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf