Publikationer från Malmö universitet
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Salvi, Dario
Publikationer (10 of 13) Visa alla publikationer
Salvi, D., Ymeri, G., Jimeno, D., Soto-Léon, V., Pérez Borrego, Y., Olsson, C. M. & Carrasco-Lopez, C. (2023). An IoT-based system for the study of neuropathic pain in spinal cord injury. In: Athanasios Tsanas; Andreas Triantafyllidis (Ed.), Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceeding. Paper presented at 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022 (pp. 93-103). Springer
Öppna denna publikation i ny flik eller fönster >>An IoT-based system for the study of neuropathic pain in spinal cord injury
Visa övriga...
2023 (Engelska)Ingår i: Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceeding / [ed] Athanasios Tsanas; Andreas Triantafyllidis, Springer, 2023, s. 93-103Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Neuropathic pain is a difficult condition to treat and would require reliable biomarkers to personalise and optimise treatments. To date, pain levels are mostly measured with subjective scales, but research has shown that electroencephalography (EEG) and heart rate variability (HRV) can be linked to those levels. Internet of Things technology could allow embedding EEG and HRV in easy-to-use systems that patients can use at home in their daily life. We have developed a system for home monitoring that includes a portable EEG device, a tablet application to guide patients through imaginary motor tasks while recording EEG, a wearable HRV sensor and a mobile phone app to report pain levels. We are using this system in a clinical study involving 15 spinal cord injury patients for one month. Preliminary results show that relevant data are being collected, with inter and intra-patients variability for both HRV and pain levels, and that the mobile phone app is perceived as usable, of good quality and useful. However, because of its complexity, the system requires some effort from patients, is sometimes unreliable and the collected EEG signals are not always of the desired quality.

Ort, förlag, år, upplaga, sidor
Springer, 2023
Serie
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, ISSN 1867-8211, E-ISSN 1867-822X ; 488
Nyckelord
IoT, EEG, HRV, Neuropathic pain, Mobile health
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:mau:diva-58645 (URN)10.1007/978-3-031-34586-9_7 (DOI)978-3-031-34585-2 (ISBN)978-3-031-34586-9 (ISBN)
Konferens
16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022
Forskningsfinansiär
EU, Horisont Europa, 101030384
Tillgänglig från: 2023-03-14 Skapad: 2023-03-14 Senast uppdaterad: 2023-07-10Bibliografiskt granskad
Tsang, K. C., Pinnock, H., Wilson, A. M., Salvi, D., Olsson, C. M. & Syed Ahmar, S. (2023). Compliance and Usability of an Asthma Home Monitoring System. In: Athanasios Tsanas; Andreas Triantafyllidis (Ed.), Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceedings. Paper presented at 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022 (pp. 116-126). Springer
Öppna denna publikation i ny flik eller fönster >>Compliance and Usability of an Asthma Home Monitoring System
Visa övriga...
2023 (Engelska)Ingår i: Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceedings / [ed] Athanasios Tsanas; Andreas Triantafyllidis, Springer, 2023, s. 116-126Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Asthma monitoring is an important aspect of patient self-management. However, due to its repetitive nature, patients can find long-term monitoring tedious. Mobile health can provide an avenue to monitor asthma without needing high levels of active engagement, and instead rely on passive monitoring. In our recent AAMOS-00 study, we collected mobile health data over six months from 22 asthma patients using passive and active monitoring technology, including smartwatch, peak flow measurements, and daily asthma diaries.

Compliance to smartwatch monitoring was found to lie between the compliance to complete daily asthma diaries and measuring daily peak flow. However, some study participants faced technical issues with the devices which could have affected the relative compliance of the monitoring tasks.

Moreover, as evidenced by standard usability questionnaires, we found that the AAMOS-00 study’s data collection system was similar in quality to other studies and published apps.

Ort, förlag, år, upplaga, sidor
Springer, 2023
Serie
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, ISSN 1867-8211, E-ISSN 1867-822X ; 488
Nyckelord
Asthma, Mobile Health, mHealth, Home Monitoring, Compliance, Passive Monitoring
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:mau:diva-58644 (URN)10.1007/978-3-031-34586-9_9 (DOI)978-3-031-34585-2 (ISBN)978-3-031-34586-9 (ISBN)
Konferens
16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022
Tillgänglig från: 2023-03-14 Skapad: 2023-03-14 Senast uppdaterad: 2023-07-10Bibliografiskt granskad
Tsang, K. C., Pinnock, H., Wilson, A. M., Salvi, D. & Shah, S. A. (2023). Home monitoring with connected mobile devices for asthma attack prediction with machine learning. Scientific Data, 10(1), Article ID 370.
Öppna denna publikation i ny flik eller fönster >>Home monitoring with connected mobile devices for asthma attack prediction with machine learning
Visa övriga...
2023 (Engelska)Ingår i: Scientific Data, E-ISSN 2052-4463, Vol. 10, nr 1, artikel-id 370Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Monitoring asthma is essential for self-management. However, traditional monitoring methods require high levels of active engagement, and some patients may find this tedious. Passive monitoring with mobile-health devices, especially when combined with machine-learning, provides an avenue to reduce management burden. Data for developing machine-learning algorithms are scarce, and gathering new data is expensive. A few datasets, such as the Asthma Mobile Health Study, are publicly available, but they only consist of self-reported diaries and lack any objective and passively collected data. To fill this gap, we carried out a 2-phase, 7-month AAMOS-00 observational study to monitor asthma using three smart-monitoring devices (smart-peak-flow-meter/smart-inhaler/smartwatch), and daily symptom questionnaires. Combined with localised weather, pollen, and air-quality reports, we collected a rich longitudinal dataset to explore the feasibility of passive monitoring and asthma attack prediction. This valuable anonymised dataset for phase-2 of the study (device monitoring) has been made publicly available. Between June-2021 and June-2022, in the midst of UK's COVID-19 lockdowns, 22 participants across the UK provided 2,054 unique patient-days of data.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2023
Nationell ämneskategori
Lungmedicin och allergi
Identifikatorer
urn:nbn:se:mau:diva-61395 (URN)10.1038/s41597-023-02241-9 (DOI)001003519300002 ()37291158 (PubMedID)2-s2.0-85161336943 (Scopus ID)
Tillgänglig från: 2023-06-27 Skapad: 2023-06-27 Senast uppdaterad: 2023-08-16Bibliografiskt granskad
Rouyard, T., Leal, J., Salvi, D., Baskerville, R., Velardo, C. & Gray, A. (2022). An Intuitive Risk Communication Tool to Enhance Patient-Provider Partnership in Diabetes Consultation.. Journal of Diabetes Science and Technology, 16(4), 988-994, Article ID 1932296821995800.
Öppna denna publikation i ny flik eller fönster >>An Intuitive Risk Communication Tool to Enhance Patient-Provider Partnership in Diabetes Consultation.
Visa övriga...
2022 (Engelska)Ingår i: Journal of Diabetes Science and Technology, E-ISSN 1932-2968, Vol. 16, nr 4, s. 988-994, artikel-id 1932296821995800Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

INTRODUCTION: This technology report introduces an innovative risk communication tool developed to support providers in communicating diabetes-related risks more intuitively to people with type 2 diabetes mellitus (T2DM).

METHODS: The development process involved three main steps: (1) selecting the content and format of the risk message; (2) developing a digital interface; and (3) assessing the usability and usefulness of the tool with clinicians through validated questionnaires.

RESULTS: The tool calculates personalized risk information based on a validated simulation model (United Kingdom Prospective Diabetes Study Outcomes Model 2) and delivers it using more intuitive risk formats, such as "effective heart age" to convey cardiovascular risks. Clinicians reported high scores for the usability and usefulness of the tool, making its adoption in routine care promising.

CONCLUSIONS: Despite increased use of risk calculators in clinical care, this is the first time that such a tool has been developed in the diabetes area. Further studies are needed to confirm the benefits of using this tool on behavioral and health outcomes in T2DM populations.

Ort, förlag, år, upplaga, sidor
Sage Publications, 2022
Nyckelord
primary care, risk communication, risk perceptions, shared decision making, type 2 diabetes mellitus
Nationell ämneskategori
Endokrinologi och diabetes
Identifikatorer
urn:nbn:se:mau:diva-41194 (URN)10.1177/1932296821995800 (DOI)000904153500025 ()33655766 (PubMedID)
Tillgänglig från: 2021-03-10 Skapad: 2021-03-10 Senast uppdaterad: 2023-02-24Bibliografiskt granskad
Ymeri, G., Salvi, D. & Olsson, C. M. (2022). Linking data collected from mobile phones withsymptoms level in Parkinson’s Disease: Dataexploration of the mPower study. In: Tsanas, Athanasios; Triantafyllidis, Andreas (Ed.), Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceedings. Paper presented at 16th EAI International Conference, Pervasive Health 2022, Thessaloniki, Greece, December 12-14, 2022. Cham: Springer
Öppna denna publikation i ny flik eller fönster >>Linking data collected from mobile phones withsymptoms level in Parkinson’s Disease: Dataexploration of the mPower study
2022 (Engelska)Ingår i: Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceedings / [ed] Tsanas, Athanasios; Triantafyllidis, Andreas, Cham: Springer, 2022Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Advancements in technology, such as smartphones and wearabledevices, can be used for collecting movement data through embeddedsensors. This paper focuses on linking Parkinson’s Disease severitywith data collected from mobile phones in the mPower study. As referencefor symptoms’ severity, we use the answers provided to part 2 ofthe standard MDS-UPDRS scale. As input variables, we use the featurescomputed within mPower from the raw data collected during 4 phonebasedactivities: walking, rest, voice and finger tapping. The features arefiltered in order to remove unreliable datapoints and associated to referencevalues. After pre-processing, 5 Machine Learning algorithms areapplied for predictive analysis. We show that, notwithstanding the noisedue to the data being collected in an uncontrolled manner, the regressedsymptom levels are moderately to strongly correlated with the actualvalues (highest Pearson’s correlation = 0.6). However, the high differencebetween the values also implies that the regressed values can not beconsidered as a substitute for a conventional clinical assessment (lowestmean absolute error = 5.4).

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2022
Serie
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, ISSN 1867-8211
Nyckelord
mobile health, Parkinson’s disease, mPower data
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:mau:diva-58646 (URN)10.1007/978-3-031-34586-9_29 (DOI)978-3-031-34585-2 (ISBN)978-3-031-34586-9 (ISBN)
Konferens
16th EAI International Conference, Pervasive Health 2022, Thessaloniki, Greece, December 12-14, 2022
Tillgänglig från: 2023-03-14 Skapad: 2023-03-14 Senast uppdaterad: 2023-07-10Bibliografiskt granskad
Ymeri, G., Salvi, D., Olsson, C. M., Thanasis, T. & Svenningsson, P. (2022). Mobile-based multi-dimensional data collection for Parkinson’s symptoms in home environments. In: : . Paper presented at 44th International Engineering in Medicine and Biology, 11-15 July 2022, Glasgow, UK.
Öppna denna publikation i ny flik eller fönster >>Mobile-based multi-dimensional data collection for Parkinson’s symptoms in home environments
Visa övriga...
2022 (Engelska)Konferensbidrag, Poster (med eller utan abstract) (Refereegranskat)
Abstract [en]

We extended the Mobistudy app for clinical research in order to gather data about Parkinson’s motor and non-motor symptoms. We developed 5 tests that make use of the phone’s embedded sensors and 3 questionnaires. We show through data collected by healthy individuals simulating PD symptoms that the tests are able to identify the presence of symptoms.

Nyckelord
mobile health, Parkinson’s disease
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
urn:nbn:se:mau:diva-59125 (URN)
Konferens
44th International Engineering in Medicine and Biology, 11-15 July 2022, Glasgow, UK
Tillgänglig från: 2023-04-05 Skapad: 2023-04-05 Senast uppdaterad: 2023-04-14Bibliografiskt granskad
Salvi, D., Olsson, C. M., Ymeri, G., Carrasco-Lopez, C., Tsang, K. C. .. & Shah, S. A. (2022). Mobistudy: Mobile-based, platform-independent, multi-dimensional data collection for clinical studies. In: IoT 2021: Conference Proceedings. Paper presented at 11th International Conference on the Internet of Things, November 8-11, 2021. St.Gallen, Switzerland (pp. 219-222). ACM Digital Library
Öppna denna publikation i ny flik eller fönster >>Mobistudy: Mobile-based, platform-independent, multi-dimensional data collection for clinical studies
Visa övriga...
2022 (Engelska)Ingår i: IoT 2021: Conference Proceedings, ACM Digital Library, 2022, s. 219-222Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Internet of Things (IoT) can work as a useful tool for clinical research. We developed a software platform that allows researchers to publish clinical studies and volunteers to participate into them using an app and connected IoT devices. The platform includes a REST API, a web interface for researchers and an app that collects data during tasks volunteers are invited to contribute. Nine tasks have been developed: Forms, Positioning, Finger tapping, Pulse-oximetry, Peak Flow measurement, Activity tracking, Data query, Queen’s College step test and Six-minute walk test. These leverage sensors embedded in the phone, connected Bluetooth devices and additional APIs like HealthKit and Google Fit. Currently, the platform is used in two clinical studies by 25 patients: an asthma management study in the United Kingdom, and a neuropathic pain management study in Spain.

Ort, förlag, år, upplaga, sidor
ACM Digital Library, 2022
Nyckelord
clinical research, m-Health, IoT
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:mau:diva-50618 (URN)10.1145/3494322.3494363 (DOI)978-1-4503-8566-4 (ISBN)
Konferens
11th International Conference on the Internet of Things, November 8-11, 2021. St.Gallen, Switzerland
Forskningsfinansiär
KK-stiftelsen, 20140035
Tillgänglig från: 2022-03-14 Skapad: 2022-03-14 Senast uppdaterad: 2022-08-17Bibliografiskt granskad
Tsang, K. C., Pinnock, H., Wilson, A. M., Salvi, D. & Shah, S. A. (2022). Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol. BMJ Open, 12(10), Article ID e064166.
Öppna denna publikation i ny flik eller fönster >>Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol
Visa övriga...
2022 (Engelska)Ingår i: BMJ Open, E-ISSN 2044-6055, Vol. 12, nr 10, artikel-id e064166Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

INTRODUCTION: Supported self-management empowering people with asthma to detect early deterioration and take timely action reduces the risk of asthma attacks. Smartphones and smart monitoring devices coupled with machine learning could enhance self-management by predicting asthma attacks and providing tailored feedback.We aim to develop and assess the feasibility of an asthma attack predictor system based on data collected from a range of smart devices.

METHODS AND ANALYSIS: A two-phase, 7-month observational study to collect data about asthma status using three smart monitoring devices, and daily symptom questionnaires. We will recruit up to 100 people via social media and from a severe asthma clinic, who are at risk of attacks and who use a pressurised metered dose relief inhaler (that fits the smart inhaler device).Following a preliminary month of daily symptom questionnaires, 30 participants able to comply with regular monitoring will complete 6 months of using smart devices (smart peak flow meter, smart inhaler and smartwatch) and daily questionnaires to monitor asthma status. The feasibility of this monitoring will be measured by the percentage of task completion. The occurrence of asthma attacks (definition: American Thoracic Society/European Respiratory Society Task Force 2009) will be detected by self-reported use (or increased use) of oral corticosteroids. Monitoring data will be analysed to identify predictors of asthma attacks. At the end of the monitoring, we will assess users' perspectives on acceptability and utility of the system with an exit questionnaire.

ETHICS AND DISSEMINATION: Ethics approval was provided by the East of England - Cambridge Central Research Ethics Committee. IRAS project ID: 285 505 with governance approval from ACCORD (Academic and Clinical Central Office for Research and Development), project number: AC20145. The study sponsor is ACCORD, the University of Edinburgh.Results will be reported through peer-reviewed publications, abstracts and conference posters. Public dissemination will be centred around blogs and social media from the Asthma UK network and shared with study participants.

Ort, förlag, år, upplaga, sidor
BMJ Publishing Group Ltd, 2022
Nyckelord
Asthma, Health informatics, Information technology, World Wide Web technology
Nationell ämneskategori
Medicin och hälsovetenskap Lungmedicin och allergi
Identifikatorer
urn:nbn:se:mau:diva-55425 (URN)10.1136/bmjopen-2022-064166 (DOI)000866249200013 ()36192103 (PubMedID)
Tillgänglig från: 2022-10-18 Skapad: 2022-10-18 Senast uppdaterad: 2023-08-28Bibliografiskt granskad
Mahdi, A., Błaszczyk, P., Dłotko, P., Salvi, D., Chan, T.-S., Harvey, J., . . . Tarassenko, L. (2021). OxCOVID19 Database, a multimodal data repository for better understanding the global impact of COVID-19.. Scientific Reports, 11(1), Article ID 9237.
Öppna denna publikation i ny flik eller fönster >>OxCOVID19 Database, a multimodal data repository for better understanding the global impact of COVID-19.
Visa övriga...
2021 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 11, nr 1, artikel-id 9237Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Oxford COVID-19 Database (OxCOVID19 Database) is a comprehensive source of information related to the COVID-19 pandemic. This relational database contains time-series data on epidemiology, government responses, mobility, weather and more across time and space for all countries at the national level, and for more than 50 countries at the regional level. It is curated from a variety of (wherever available) official sources. Its purpose is to facilitate the analysis of the spread of SARS-CoV-2 virus and to assess the effects of non-pharmaceutical interventions to reduce the impact of the pandemic. Our database is a freely available, daily updated tool that provides unified and granular information across geographical regions. Design type Data integration objective Measurement(s) Coronavirus infectious disease, viral epidemiology Technology type(s) Digital curation Factor types(s) Sample characteristic(s) Homo sapiens.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2021
Nationell ämneskategori
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi
Identifikatorer
urn:nbn:se:mau:diva-42151 (URN)10.1038/s41598-021-88481-4 (DOI)000656201900002 ()33927237 (PubMedID)
Tillgänglig från: 2021-05-10 Skapad: 2021-05-10 Senast uppdaterad: 2022-09-15Bibliografiskt granskad
Maus, B., Olsson, C. M. & Salvi, D. (2021). Privacy Personas for IoT-Based Health Research: A Privacy Calculus Approach. Frontiers in Digital Health, 3, 1-12, Article ID 675754.
Öppna denna publikation i ny flik eller fönster >>Privacy Personas for IoT-Based Health Research: A Privacy Calculus Approach
2021 (Engelska)Ingår i: Frontiers in Digital Health, E-ISSN 2673-253X, Vol. 3, s. 1-12, artikel-id 675754Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The reliance on data donation from citizens as a driver for research, known as citizen science, has accelerated during the Sars-Cov-2 pandemic. An important enabler of this is Internet of Things (IoT) devices, such as mobile phones and wearable devices, that allow continuous data collection and convenient sharing. However, potentially sensitive health data raises privacy and security concerns for citizens, which research institutions and industries must consider. In e-commerce or social network studies of citizen science, a privacy calculus related to user perceptions is commonly developed, capturing the information disclosure intent of the participants. In this study, we develop a privacy calculus model adapted for IoT-based health research using citizen science for user engagement and data collection. Based on an online survey with 85 participants, we make use of the privacy calculus to analyse the respondents' perceptions. The emerging privacy personas are clustered and compared with previous research, resulting in three distinct personas which can be used by designers and technologists who are responsible for developing suitable forms of data collection. These are the 1) Citizen Science Optimist, the 2) Selective Data Donor, and the 3) Health Data Controller. Together with our privacy calculus for citizen science based digital health research, the three privacy personas are the main contributions of this study.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2021
Nyckelord
Citizen science, IoT-based health research, privacy calculus, privacy personas, survey
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:mau:diva-48206 (URN)10.3389/fdgth.2021.675754 (DOI)
Tillgänglig från: 2021-12-16 Skapad: 2021-12-16 Senast uppdaterad: 2022-05-06Bibliografiskt granskad
Projekt
Context-Aware and Autonomous Behavior: Making sense of IoTmHälsa vid pandemier: Smartphone-baserade portabla och bärbara sensorer för COVID-19 diagnostik; Malmö universitetParkapp
Organisationer

Sök vidare i DiVA

Visa alla publikationer