Open this publication in new window or tab >>Show others...
2025 (English)In: Algorithmica, ISSN 0178-4617, E-ISSN 1432-0541, Vol. 87, no 4, p. 572-593Article in journal (Refereed) Published
Abstract [en]
We study the Art Gallery Problem under k-hop visibility in polyominoes. In this visibility model, two unit squares of a polyomino can see each other if and only if the shortest path between the respective vertices in the dual graph of the polyomino has length at most k. In this paper, we show that the VC dimension of this problem is 3 in simple polyominoes, and 4 in polyominoes with holes. Furthermore, we provide a reduction from Planar Monotone 3Sat, thereby showing that the problem is NP-complete even in thin polyominoes (i.e., polyominoes that do not a contain a 2×2 block of cells). Complementarily, we present a linear-time 4-approximation algorithm for simple 2-thin polyominoes (which do not contain a 3×3 block of cells) for all k∈N.
Place, publisher, year, edition, pages
Springer, 2025
Keywords
Approximation, Art Gallery problem, k-hop dominating set, k-hop visibility, Polyominoes, VC dimension
National Category
Computer Sciences
Identifiers
urn:nbn:se:mau:diva-74043 (URN)10.1007/s00453-024-01292-7 (DOI)001426817000001 ()2-s2.0-85217162620 (Scopus ID)
2025-02-192025-02-192025-03-25Bibliographically approved