Publikationer från Malmö universitet
Endre søk
Link to record
Permanent link

Direct link
Alternativa namn
Publikasjoner (10 av 72) Visa alla publikasjoner
Wolff, M., Frielinghaus, H., Cárdenas, M., Gonzalez, J. F., Theis-Bröhl, K., Softwedel, O., . . . Gutfreund, P. (2023). Grazing incidence neutron scattering for the study of solid–liquid interfaces. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering: . Elsevier
Åpne denne publikasjonen i ny fane eller vindu >>Grazing incidence neutron scattering for the study of solid–liquid interfaces
Vise andre…
2023 (engelsk)Inngår i: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 2023Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

Neutrons are characterized by a low absorption in many engineering materials. At the same time the scattering cross section of light elements, such as hydrogen and deuterium, may be large. These properties make neutron scattering experiments performed under grazing incidence geometry an excellent tool for the study of solid–liquid interfaces. In this review we describe the basic concepts of neutron reflection and grazing incidence scattering experiments as well as experimental procedures and sample cells. The full power of the method is exemplified on a range of science areas, including polymers, bio- and ionic liquid lubricants, electrolytes as well as bio-membranes or magnetic liquids.

sted, utgiver, år, opplag, sider
Elsevier, 2023
Emneord
Grazing incidence scattering, Neutron reflectometry, Solid–liquid interface
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-56106 (URN)10.1016/b978-0-323-85669-0.00014-3 (DOI)
Merknad

encyclopedia entry 

Tilgjengelig fra: 2022-11-17 Laget: 2022-11-17 Sist oppdatert: 2022-11-17bibliografisk kontrollert
Correa, Y., Del Giudice, R., Waldie, S., Thépaut, M., Micciula, S., Gerelli, Y., . . . Cárdenas, M. (2023). High-Density Lipoprotein function is modulated by the SARS-CoV-2 spike protein in a lipid-type dependent manner.. Journal of Colloid and Interface Science, 645, 627-638, Article ID S0021-9797(23)00736-1.
Åpne denne publikasjonen i ny fane eller vindu >>High-Density Lipoprotein function is modulated by the SARS-CoV-2 spike protein in a lipid-type dependent manner.
Vise andre…
2023 (engelsk)Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 645, s. 627-638, artikkel-id S0021-9797(23)00736-1Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function. Based on neutron reflectometry (NR) and the ability of HDL to efflux cholesterol from macrophages, we confirm these observations and further identify the preference of the S protein for specific lipids and the consequent effects on HDL function on lipid exchange ability. Moreover, the effect of the S protein on HDL function differs depending on the individuals lipid serum profile. Contrasting trends were observed for individuals presenting low triglycerides/high cholesterol serum levels (LTHC) compared to high triglycerides/high cholesterol (HTHC) or low triglycerides/low cholesterol serum levels (LTLC). Collectively, these results suggest that the S protein interacts with the HDL particle and, depending on the lipid profile of the infected individual, it impairs its function during COVID-19 infection, causing an imbalance in lipid metabolism.

sted, utgiver, år, opplag, sider
Elsevier, 2023
Emneord
COVID-19, Cholesterol efflux capacity, Deuterated cholesterol, HDL, Lipid metabolism, Lipids, Neutron reflection, SARS-CoV-2 spike protein
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-61402 (URN)10.1016/j.jcis.2023.04.137 (DOI)001004237100001 ()37167912 (PubMedID)2-s2.0-85158888783 (Scopus ID)
Tilgjengelig fra: 2023-06-26 Laget: 2023-06-26 Sist oppdatert: 2023-10-23bibliografisk kontrollert
Cárdenas, M., Campbell, R. A., Arteta, M. Y., Lawrence, M. J. & Sebastiani, F. (2023). Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Current Opinion in Colloid & Interface Science, 66, Article ID 101705.
Åpne denne publikasjonen i ny fane eller vindu >>Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery
Vise andre…
2023 (engelsk)Inngår i: Current Opinion in Colloid & Interface Science, ISSN 1359-0294, E-ISSN 1879-0399, Vol. 66, artikkel-id 101705Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Lipid nanoparticles (LNPs) are the most versatile and successful gene delivery systems, notably highlighted by their use in vaccines against COVID-19. LNPs have a well-defined core-shell structure, each region with its own distinctive compositions, suited for a wide range of in vivo delivery applications. Here, we discuss how a detailed knowledge of LNP structure can guide LNP formulation to improve the efficiency of delivery of their nucleic acid payload. Perspectives are detailed on how LNP structural design can guide more efficient nucleic acid transfection. Views on key physical characterization techniques needed for such developments are outlined including opinions on biophysical approaches both correlating structure with functionality in biological fluids and improving their ability to escape the endosome and deliver they payload.

sted, utgiver, år, opplag, sider
Elsevier, 2023
Emneord
Lipid nanoparticles, Nucleic acid delicery, Structure-function, Cationic
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-61924 (URN)10.1016/j.cocis.2023.101705 (DOI)001025798000001 ()2-s2.0-85162178818 (Scopus ID)
Tilgjengelig fra: 2023-08-16 Laget: 2023-08-16 Sist oppdatert: 2023-08-16bibliografisk kontrollert
Paracini, N., Gutfreund, P., Welbourn, R., Gonzalez-Martinez, J. F., Zhu, K., Miao, Y., . . . Cárdenas, M. (2023). Structural Characterization of Nanoparticle-Supported Lipid Bilayer Arrays by Grazing Incidence X-ray and Neutron Scattering. ACS Applied Materials and Interfaces, 15(3), 3772-3780
Åpne denne publikasjonen i ny fane eller vindu >>Structural Characterization of Nanoparticle-Supported Lipid Bilayer Arrays by Grazing Incidence X-ray and Neutron Scattering
Vise andre…
2023 (engelsk)Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 15, nr 3, s. 3772-3780Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Arrays of nanoparticle-supported lipid bilayers (nanoSLB) are lipid-coated nanopatterned interfaces that provide a platform to study curved model biological membranes using surface-sensitive techniques. We combined scattering techniques with direct imaging, to gain access to sub-nanometer scale structural information on stable nanoparticle monolayers assembled on silicon crystals in a noncovalent manner using a Langmuir-Schaefer deposition. The structure of supported lipid bilayers formed on the nanoparticle arrays via vesicle fusion was investigated using a combination of grazing incidence X-ray and neutron scattering techniques complemented by fluorescence microscopy imaging. Ordered nanoparticle assemblies were shown to be suitable and stable substrates for the formation of curved and fluid lipid bilayers that retained lateral mobility, as shown by fluorescence recovery after photobleaching and quartz crystal microbalance measurements. Neutron reflectometry revealed the formation of high-coverage lipid bilayers around the spherical particles together with a flat lipid bilayer on the substrate below the nanoparticles. The presence of coexisting flat and curved supported lipid bilayers on the same substrate, combined with the sub-nanometer accuracy and isotopic sensitivity of grazing incidence neutron scattering, provides a promising novel approach to investigate curvature-dependent membrane phenomena on supported lipid bilayers.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2023
Emneord
GISANS, GISAXS, membrane curvature, model membranes, nanoparticle-supported lipid bilayers, nanoSLB, neutron reflectometry
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-58543 (URN)10.1021/acsami.2c18956 (DOI)000925320400001 ()36625710 (PubMedID)2-s2.0-85146341807 (Scopus ID)
Tilgjengelig fra: 2023-03-03 Laget: 2023-03-03 Sist oppdatert: 2023-10-09bibliografisk kontrollert
Luchini, A., Tidemand, F. G., Johansen, N. T., Sebastiani, F., Corucci, G., Fragneto, G., . . . Arleth, L. (2022). Dark peptide discs for the investigation of membrane proteins in supported lipid bilayers: the case of synaptobrevin 2 (VAMP2). Nanoscale Advances, 10(17)
Åpne denne publikasjonen i ny fane eller vindu >>Dark peptide discs for the investigation of membrane proteins in supported lipid bilayers: the case of synaptobrevin 2 (VAMP2)
Vise andre…
2022 (engelsk)Inngår i: Nanoscale Advances, E-ISSN 2516-0230, Vol. 10, nr 17Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Supported lipid bilayers (SLBs) are commonly used as model systems mimicking biological membranes. Recently, we reported a new method to produce SLBs with incorporated membrane proteins, which is based on the application of peptide discs [Luchini et al., Analytical Chemistry, 2020, 92, 1081-1088]. Peptide discs are small discoidal particles composed of a lipid core and an outer belt of self-assembled 18A peptides. SLBs including membrane proteins can be formed by depositing the peptide discs on a solid support and subsequently removing the peptide by buffer rinsing. Here, we introduce a new variant of the 18A peptide, named dark peptide (d18A). d18A exhibits UV absorption at 214 nm, whereas the absorption at 280 nm is negligible. This improves sample preparation as it enables a direct quantification of the membrane protein concentration in the peptide discs by measuring UV absorption at 280 nm. We describe the application of the peptide discs prepared with d18A (dark peptide discs) to produce SLBs with a membrane protein, synaptobrevin 2 (VAMP2). The collected data showed the successful formation of SLBs with high surface coverage and incorporation of VAMP2 in a single orientation with the extramembrane domain exposed towards the bulk solvent. Compared to 18A, we found that d18A was more efficiently removed from the SLB. Our data confirmed the structural organisation of VAMP2 as including both alpha-helical and beta-sheet secondary structure. We further verified the orientation of VAMP2 in the SLBs by characterising the binding of VAMP2 with alpha-synuclein. These results point at the produced SLBs as relevant membrane models for biophysical studies as well as nanostructured biomaterials.

sted, utgiver, år, opplag, sider
Royal Society of Chemistry, 2022
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-55391 (URN)10.1039/d2na00384h (DOI)000855805500001 ()36341300 (PubMedID)2-s2.0-85139258329 (Scopus ID)
Tilgjengelig fra: 2022-10-17 Laget: 2022-10-17 Sist oppdatert: 2023-10-09bibliografisk kontrollert
Del Giudice, R., Paracini, N., Laursen, T., Blanchet, C., Roosen-Runge, F. & Cárdenas, M. (2022). Expanding the Toolbox for Bicelle-Forming Surfactant–Lipid Mixtures. Molecules, 27(21), 7628-7628
Åpne denne publikasjonen i ny fane eller vindu >>Expanding the Toolbox for Bicelle-Forming Surfactant–Lipid Mixtures
Vise andre…
2022 (engelsk)Inngår i: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 27, nr 21, s. 7628-7628Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Bicelles are disk-shaped models of cellular membranes used to study lipid–protein interactions, as well as for structural and functional studies on transmembrane proteins. One challenge for the incorporation of transmembrane proteins in bicelles is the limited range of detergent and lipid combinations available for the successful reconstitution of proteins in model membranes. This is important, as the function and stability of transmembrane proteins are very closely linked to the detergents used for their purification and to the lipids that the proteins are embedded in. Here, we expand the toolkit of lipid and detergent combinations that allow the formation of stable bicelles. We use a combination of dynamic light scattering, small-angle X-ray scattering and cryogenic electron microscopy to perform a systematic sample characterization, thus providing a set of conditions under which bicelles can be successfully formed.

sted, utgiver, år, opplag, sider
MDPI, 2022
HSV kategori
Forskningsprogram
Hälsa och samhälle
Identifikatorer
urn:nbn:se:mau:diva-55888 (URN)10.3390/molecules27217628 (DOI)000883556400001 ()36364455 (PubMedID)
Forskningsfinansiär
Swedish Research Council, 2018-03990Swedish Research Council, 2018-04833
Tilgjengelig fra: 2022-11-10 Laget: 2022-11-10 Sist oppdatert: 2023-08-28bibliografisk kontrollert
Luchini, A., Tidemand, F. G., Araya-Secchi, R., Campana, M., Cárdenas, M. & Arleth, L. (2022). Structural model of tissue factor (TF) and TF-factor VIIa complex in a lipid membrane: A combined experimental and computational study. Journal of Colloid and Interface Science, 623, 294-305, Article ID S0021-9797(22)00724-X.
Åpne denne publikasjonen i ny fane eller vindu >>Structural model of tissue factor (TF) and TF-factor VIIa complex in a lipid membrane: A combined experimental and computational study
Vise andre…
2022 (engelsk)Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 623, s. 294-305, artikkel-id S0021-9797(22)00724-XArtikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Tissue factor (TF) is a membrane protein involved in blood coagulation. TF initiates a cascade of proteolytic reactions, ultimately leading to the formation of a blood clot. The first reaction consists of the binding of the coagulation factor VII and its conversion to the activated form, FVIIa. Here, we combined experimental, i.e. quartz crystal microbalance with dissipation monitoring and neutron reflectometry, and computational, i.e. molecular dynamics (MD) simulation, methods to derive a complete structural model of TF and TF/FVIIa complex in a lipid bilayer. This model shows that the TF transmembrane domain (TMD), and the flexible linker connecting the TMD to the extracellular domain (ECD), define the location of the ECD on the membrane surface. The average orientation of the ECD relative to the bilayer surface is slightly tilted towards the lipid headgroups, a conformation that we suggest is promoted by phosphatidylserine lipids, and favours the binding of FVIIa. On the other hand, the formation of the TF/FVIIa complex induces minor changes in the TF structure, and reduces the conformational freedom of both TF and FVIIA. Altogether we describe the protein-protein and protein-lipid interactions favouring blood coagulation, but also instrumental to the development of new drugs.

sted, utgiver, år, opplag, sider
Elsevier, 2022
Emneord
Membrane proteins, Molecular dynamics simulations, Neutron reflectometry, Peptide discs, QCM-D, Supported lipid bilayers, Tissue factor
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-52207 (URN)10.1016/j.jcis.2022.04.147 (DOI)000829956000007 ()35594588 (PubMedID)
Tilgjengelig fra: 2022-06-08 Laget: 2022-06-08 Sist oppdatert: 2022-08-22bibliografisk kontrollert
Correa, Y., Jansen, M., Blanchet, C., Roosen-Runge, F., Pedersen, J. S. & Cárdenas, M. (2022). Structural studies on LDL from patients with high and low lipoprotein (a). Paper presented at EAS (European Atherosclerosis Society) 2022, Milano 22-25 May. Atherosclerosis, 355, 56-56, Article ID EP164.
Åpne denne publikasjonen i ny fane eller vindu >>Structural studies on LDL from patients with high and low lipoprotein (a)
Vise andre…
2022 (engelsk)Inngår i: Atherosclerosis, ISSN 0021-9150, E-ISSN 1879-1484, Vol. 355, s. 56-56, artikkel-id EP164Artikkel i tidsskrift, Meeting abstract (Annet vitenskapelig) Published
sted, utgiver, år, opplag, sider
Elsevier, 2022
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-55399 (URN)10.1016/j.atherosclerosis.2022.06.394 (DOI)000853696400384 ()
Konferanse
EAS (European Atherosclerosis Society) 2022, Milano 22-25 May
Tilgjengelig fra: 2022-10-17 Laget: 2022-10-17 Sist oppdatert: 2023-08-23bibliografisk kontrollert
Barriga, H., Cárdenas, M., Hall, S., Hellsing, M., Karlsson, M., Pavan, A., . . . Wolff, M. (2021). A Bibliometric Study on Swedish Neutron Users for the Period 2006–2020. Neutron News, 32(4), 28-33
Åpne denne publikasjonen i ny fane eller vindu >>A Bibliometric Study on Swedish Neutron Users for the Period 2006–2020
Vise andre…
2021 (engelsk)Inngår i: Neutron News, ISSN 1044-8632, E-ISSN 1931-7352, Vol. 32, nr 4, s. 28-33Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
Taylor & Francis, 2021
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-48577 (URN)10.1080/10448632.2021.1999147 (DOI)2-s2.0-85121466533 (Scopus ID)
Tilgjengelig fra: 2021-12-29 Laget: 2021-12-29 Sist oppdatert: 2022-11-17bibliografisk kontrollert
Waldie, S., Sebastiani, F., Moulin, M., Del Giudice, R., Paracini, N., Roosen-Runge, F., . . . Cárdenas, M. (2021). ApoE and ApoE Nascent-Like HDL Particles at Model Cellular Membranes: Effect of Protein Isoform and Membrane Composition. Frontiers in Chemistry, 9, Article ID 630152.
Åpne denne publikasjonen i ny fane eller vindu >>ApoE and ApoE Nascent-Like HDL Particles at Model Cellular Membranes: Effect of Protein Isoform and Membrane Composition
Vise andre…
2021 (engelsk)Inngår i: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 9, artikkel-id 630152Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Apolipoprotein E (ApoE), an important mediator of lipid transportation in plasma and the nervous system, plays a large role in diseases such as atherosclerosis and Alzheimer's. The major allele variants ApoE3 and ApoE4 differ only by one amino acid. However, this difference has major consequences for the physiological behaviour of each variant. In this paper, we follow (i) the initial interaction of lipid-free ApoE variants with model membranes as a function of lipid saturation, (ii) the formation of reconstituted High-Density Lipoprotein-like particles (rHDL) and their structural characterisation, and (iii) the rHDL ability to exchange lipids with model membranes made of saturated lipids in the presence and absence of cholesterol [1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) with and without 20 mol% cholesterol]. Our neutron reflection results demonstrate that the protein variants interact differently with the model membranes, adopting different protein conformations. Moreover, the ApoE3 structure at the model membrane is sensitive to the level of lipid unsaturation. Small-angle neutron scattering shows that the ApoE containing lipid particles form elliptical disc-like structures, similar in shape but larger than nascent or discoidal HDL based on Apolipoprotein A1 (ApoA1). Neutron reflection shows that ApoE-rHDL do not remove cholesterol but rather exchange saturated lipids, as occurs in the brain. In contrast, ApoA1-containing particles remove and exchange lipids to a greater extent as occurs elsewhere in the body.

sted, utgiver, år, opplag, sider
Frontiers Media S.A., 2021
Emneord
ApoE isoforms, lipid exchange, reconstituted HDL, model membranes, neutron reflection, small-angle neutron scattering
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-42335 (URN)10.3389/fchem.2021.630152 (DOI)000649795200001 ()33996741 (PubMedID)2-s2.0-85105930481 (Scopus ID)
Tilgjengelig fra: 2021-05-26 Laget: 2021-05-26 Sist oppdatert: 2023-10-17bibliografisk kontrollert
Prosjekter
Nano and micro scale characterization of coatings in relation to their functional properties; Malmö universitetLipidnanopartikel – proteininteraktioner: Formuleringsoptimering för bättre terapeutisk effekt; Malmö universitet, Biofilms Research Center for BiointerfacesLipoprotein struktur, sammansättning och dynamik: Vägen till nya kliniska markörer för åderförkalkningNeutronspridning samt selektiv deuterering för att kartlägga lipidens roll i regleringen av metabolonuppbyggnadLipid nanoparticles under shear stress require novel flow SANS sample environment; Malmö universitet
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-0392-3540