Patterns and Procedural Content Generation

Revisiting Mario in World 1 Level 1

Steve Dahlskog
_Malmo University
Ostra Varvsgatan 11a

205 06 Malmo, Sweden
steve.dahlskog@mah.se

ABSTRACT

Procedural content generation and design patterns could po-
tentially be combined in several different ways in game de-
sign. This paper discusses how to combine the two, using
automatic platform game level design as an example. The
paper also present work towards a pattern-based level gen-
erator for Super Mario Bros, namely an analysis of the levels
of the original Super Mario Bros game into 23 different pat-
terns.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General-Games

Keywords

Procedural Content Generation, patterns, design, platform
games, Super Mario Bros.

1. INTRODUCTION

This paper discusses the relation between procedural con-
tent generation (PCG) and design patterns in games, and
presents work-in-progress on a design pattern-based level
generator for Super Mario Bros. (SMB). Procedural con-
tent generation in digital games refers to the automated or
semi-automated creation of game content using algorithms.
Design patterns are a way of structuring design and the de-
sign process into recurring elements. This way of thinking
originated in architecture, has had major impact on software
development and has recently been applied to game design.

In the following, we will first discuss procedural content
generation and in particular its role in providing variation
in game. We will then discuss design patterns, and how
they can (and have been) used for PCG. We then describe
ongoing work with identifying and describing level design
patterns in SMB, and building a level generator based on
these patterns.

1.1 Procedural content generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DPG 2012 May 29, 2012, Raleigh, North Carolina, USA

Copyright 2012 .

Julian Togelius
IT University of Copenhagen
Rued Langgaards Vej 7
2300 Copenhagen, Denmark

julian@togelius.com

In the digital game industry the PCG has successfully
been used for the creation of variations of content to enable
replay of a digital game. The types of game content that
have been generated range from game worlds, levels and
items to ornamental decoration. Examples of generation
of complete game worlds include Terraria [17] and Civiliza-
tion [14]. Diablo [4], Borderlands [10] and the Speed Tree [12]
middleware are examples of generation of levels, items and
decoration, respectively. An interesting example of PCG be-
ing used as a form of data compression is the space trading
game Elite [1] where David Braben and Ian Bell succeeded
to squeeze in 8 galaxies with 256 stars each into the limited
(22 kB) memory capacity of the BBC Microcomputer with
the help of pseudo-random numbers [21].

1.2 Structures, noise and meaning

Games are in many aspects a combination of designed
structures. Rules govern the game’s use in the play pro-
cess in a way that creates meaning to players by allowing
or disallowing actions. Levels guide the player through the
game world, and sometimes, game space as well, because of
its way of structuring challenges and rewards in the game
space. The game’s story builds meaning to the actions of
non-player characters (NPCs) and other entities populating
the game world and together with quests, the story provide
purpose to the challenges the player is presented with. Thus
we conclude that structures in games are fundamentally en-
tities that are inter-connected with each other by relation-
ships in a stable and consistent matter for a single game.
They should also be observable and recognizable from the
user’s perspective, either for the player character (PC), on
the player’s experience level or beyond the game, like game
genres and themes. It is from the different structures we
define meaning and consistency in abstract things as digital
games.

“Structure (in [...] games) operates much like context, and
participates in the meaning-making process. By ordering
the elements of a system in very particular ways, structure
works to create meaning.” [18]

Typically the designed structure is a functional one if helps
to create meaning for the player. By analyzing the struc-
tures in games we can find the reason to why a certain game
makes meaning in a certain way. Digital games are with
few exceptions (e.g. Dark Room Sex Game [7]) relaying on
its ability to convey information on the game state through
visual output. In action games, more often than not, the
player needs to scan, interpret and assess the information of
the game state at high speed. The assessment of the game



state allows the player to interact with the game. In design
practice the user’s ability to act is conveyed through affor-
dances and the user’s inability to act is conveyed through
constraints [16]. In order to be able to procedurally gener-
ate suitable content for a digital game the algorithm has to
be able to produce output that is meaningful to the player.
Unless the player is able to understand the output’s mean-
ing it will be experienced as noise or make the player chose
a less advantageous or perhaps even make the player fail.

In the process of game development the meaning and
structure is expressed in the content the game designer and
level designer provides. The game designer provides the de-
velopment team with the overal picture of how the game
should function. “Level designers use a toolkit or ‘level ed-
itor’ to develop new missions, scenarios, or quests for the
players. They lay out the components that appear on the
level or map and work closely with the game designer to
make these fit into the overall theme of the game.” [8]. How-
ever, this job is not an easy one because for some “Level de-
sign is an art...” [8]. We believe that a helpful tool like PCG
should be configured in such a way that the meaning and
theme of the game and of its content is conveyed through
it. The content in a game is not just randomized pieces but
rather carefully placed pieces in carefully chosen positions.
If a platform is unreachable in a platform game is has to have
a purpose other than being there for the player character to
walk on. It is not hard to imagine the frustration of a player
trying to reach a reward that is out of reach. Level design is
perhaps a form of art because of the balance between provid-
ing challenges and rewards. A challenge that is too simple
or too makes the player bored or frustrated. The essence
is to provide the content in a way that a player can rise
up to challenges and barely make them. In state-of-the-art
game development this is solved in the painstaiking process
of playtesting and iterative design [8].It would therefore be
interesting to try to utlize previous playtesting efforts and
a possible way of doing this is to be able to read a previ-
ous level design and generate new content from this in such
a way that the meaning of the content is not lost but still
new.

1.3 A little less randomization, a little more
variation, please

In a previously proposed taxonomy for PCG [24], the ques-
tion of the “right amount of variation” in relation to different
runs of an algorithm. This poses two questions concerning
what the “right amount” of variation consists of, namely; 1)
is the same amount of variation desired across all content
types and 2) how much, and what type of, variation does
the game designer want? It is very plausible that the game
(or game mode) itself is in some way dictating how much
the right amount of variation due to its design. Considering
the job of the level designer there is a risk that the game
becomes too varied so that the overall theme of the game
gets lost or the meaning or structure of the game confuses
the player. However, the aim is to create an enjoyable expe-
rience for the player. In the game industry this is achieved
by carefully crafting the game and its content in relation to
the play tests that are performed on invited players of the
right target group. In PCG terms, randomization is neces-
sary but not sufficient for automatic level design purposes,
as the output of the generator must be controlled in order
to fit with the meaning and structure of the game.

2. DESIGN PATTERNS

In the seventies, the architect Christopher Alexander de-
veloped a language of patterns. The intent was to allow
individuals to express their ability to design with the aid
of a informal grammar. “Each pattern describes a problem
which occurs over and over again in our environment, and
then describes the core solution to that problem, in such a
way that you can use the solution a million times over, with-
out ever doing it the same way twice” [2]. In essence the
pattern has two components (problem and solution) but the
value lies not in the specific solution but in the generaliza-
tion of a solution space. This way of thinking was brought
to bear on computer software design in 1994, when Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides
published a set of descriptions or solutions for how to solve
common and recurring problems in object-oriented design.
The solutions are not a finished design per se but instead
templates that can be used in many different situations [9].

2.1 Design patterns in games

In games, design patterns can be seen as providing an-
swers to problems faced by the game and/or level designer.
However, we can also see each pattern as a problem posed
by the designer to the player. If we view the content in a
level as challenges or problems the player must find a solu-
tion in order to continue the progression through the game.
The idea of automating the construction of problems with a
given solution is a strategy to avoid the limitations of con-
straint checking, allowing content to be produced without
creating impassable obstacles for the player. Furthermore,
if we use previously play-tested problems we can with some
certainty reuse problems that are fitting different skill sets
and skill levels and thus provide more appropriate content
for particular players or player types.

The seminal work of Bjork and Holopainen introduced de-
sign patterns to game design, and provides the foundations
for the contemporary discussion about the topic [3]. The
book describes hundreds of design patterns, at different lev-
els of abstraction and with reference to different game genres
and tasks of game design. Here we will focus on patterns in
the design of game levels (and similar spatial designs, e.g.
maps and tracks) as opposed to e.g. patterns in game user
interface design or rewards.

Hullett recently analysed levels of a common first-person
shooter (FPS) game in order to find recurring design pat-
terns that had an impact on gameplay [11]. The patterns
he found include arenas, sniper positions and galleries, com-
monly seen in many FPS games.

The work that is most closely related to our current con-
cern is the work already done on design patterns in platform
games. Smith et al. [19] analysed the design of platform
game levels, and later devised the Tanagra mixed-initiative
level generator [20]. Tanagra uses a constraint solver to
generate level geometry in interaction with a human de-
signer. The geometry is generated according to a number
of patterns. These patterns occur at two different levels, the
single-beat (micro) level where patterns such as the “gap pat-
tern” and “spring pattern” can be found, and at a slightly
higher level, where patterns such as “valley” and “mesa” are
composed of three micro-patterns each. These patterns are
implemented with some flexibility, as the constraint solver
can decide to stretch them to some extent to fit in the overall
structure of the level.



Peter Mawhorter [13] describes a level generator for Su-
per Mario Bros based on “occupancy-regulated extension”
(ORE). The generator works by connecting a number of
small level chunks like pieces of a puzzle, and generates levels
of more novelty and interestingness than many comparable
level generators. ORE could be seen as a compositional ap-
proach to implementing design patterns in procedural level
generation. However, the description of ORE which can be
found in the literature only allows for small and static (non-
parametrised) level chunks.

3. COMBINING PCG AND
DESIGN PATTERNS

PCG and design patterns could plausibly be combined in
several different ways, even when limiting the context to
level design. Perhaps the most straightforward way is cre-
ating compositional content generators, that view each pat-
tern as a spatial design element and simply combine these
elements by connecting them next to each other. This can be
done either with static elements, as in Mawhorter’s ORE, or
with parameterized elements, as in Tanagra. Patterns could
be connected sequentially in one dimension (as in Tanagra),
two dimensions (as in ORE) or potentially in three dimen-
sions. It is also conceivable to stack patterns, i.e. place
several patterns at the same place. This would have the ef-
fect of modulating one pattern by another. Some patterns
may fit well to certain patterns if it is placed before or after.

Another way of using patterns in the PCG process is to
use patterns as objectives, e.g. as evaluation/fitness func-
tions or constraints in search-based PCG. The existence of
particular patterns could be seen as desirable or undesirable
properties, biasing the search in content space so that the re-
sulting content would be more likely to include or not include
certain patterns. Such an approach could potentially lead to
more variation than the composition-based approach, but is
also more computationally expensive and harder to predict.
An example of this approach is the “choke point” evalua-
tion function in a recent attempt to evolve maps for the
StarCraft real-time strategy game [23]. Maps which contain
choke points are assigned higher fitness and the results of the
level generator are therefore likely to contain this particular
pattern.

With both approaches, patterns can be selected that are
particularly well suited to a particular player, for example
in order to maximise entertainment as predicted by a player
model.

4. A PLUMBER IN A STRANGELY
DESIGNED LAND

In the classic (action) platform game SMB [15] the player
guides the protagonist Mario (in single player mode) through
the world of the Mushroom kingdom where platforms, holes
in the ground (gaps), huge green pipes, boxes and blocks
acts as aid and obstacles. Furthermore the land seems to
be filled with aggressive and deadly enemies like Goombas,
Bloopers, Bullet Bills, Buzzy Beetles, Cheep-Cheeps, Ham-
mer Bros., Koopa Troopas, Koopa Paratroopas, Lakitu, Pi-
ranha Plants, and Spinies.

SMB consists of 8 worlds with 4 levels each and 11 bonus
areas. The bonus areas are often areas containing extra
rewards like coins other ones contain warp zones. The warp
zones functions as “portals” [19] to other worlds or levels

other than the next in sequence allowing a more experienced
player move through the game without risking the loss of
Mario’s “lives”. The last level of each world (the levels named
1-4, 24, etc.) takes place inside castles where a fight against
the main antagonist Bowser end each level. These “boss
fight” levels are different than the other levels in such a way
that contain long straight sections with few obstacles and
end with a hanging bridge over a lava pit where Bowser is
supposed to be dropped into.

In the following, we present a case study in finding level
design patterns based on Super Mario Bros (SMB).

5. LOOKING FOR PATTERNS IN ALL THE
RIGHT PLACES

In order to find patterns in SMB we apply a combination
of heuristic analysis [6] and rhythm groups [5] [19]. Rhythm
groups “are often fairly small, encapsulating challenging sec-
tions of gameplay” [19]. By dividing every level into sections
separated by areas where no or limited threat is imposed
upon the player’s avatar we get reasonable sized sections to
compare, group and classify into patterns.

Every level in SMB contain about 15 beats (only 10 beats
in level 1-4 and the maximum 30 in 8-1 with an average
of 15.5). However, not all of these beats are unique enough
to qualify as patterns but SMB contains more than the 4
geometry patterns and the 4 multi-beat patterns similair
to those used in Tanagra [20]. We base the names of the
different groups on the names used in Tanagra [20]. It should
be noted that we base our suggestions on the analysis of level
1-1, 1-2, 1-3, 2-1, 2-3, 3-1, 3-2, 3-3, 4-1, 4-2, 5-1, 5-2,
5-3, 6-1, 62, 7-1, 7-3, 81, 82 and 8-3. Thus ommiting
1-4, 2-4, 3—4, 4-4, 5-4, 64, 7-4 and 84 due to their focus
on the fight with Bowser and 2-2 and 7-2 which have an
underwater setting. The levels 4-3 and 6-3 includes a sort
of timed platform which falls down if Mario remains too long
on them which might yield a doubled number of suggested
patterns due to the time limitation.

5.1 Examples of Super Mario Bros design pat-
terns

In this section of the paper we intend to present our sug-
gested patterns briefly together with illustrations of a few
of those. The full list of discovered patterns can be seen in
table 1. The illustrations aim to clarify our suggested pat-
terns together with one or more solutions of how the player
can solve the problem.

One could argue that the 23 suggested patterns are re-
ally only variations on five patterns, one for each group.
This points to the problem of choosing a relevant level of
abstraction when analysing a level into patterns. We have
chosen a relatively fine-grained analysis, as we want to point
out that there are meaningful differences in terms of game-
play between patterns that are superficially very similar. For
example, two 2-hordes afford different solutions than one 4-
horde (you could jump and land between the two enemy
groups in the first case, but not in the second). We note
that it would be plausible to see the five groups we identi-
fied as “macro-patterns” and the 23 patterns within them as
“micro-patterns”, but we will not pursue this semantic point
any further here.

Figure 1 contains the two patterns “3-Horde” and “Roof
valley”. “3-Horde” can be solved with a triple short jump, a



Table 1: Patterns for Super Mario Bros. grouped
by theme.
Enemies
Enemy A single enemy
2-Horde Two enemies together
3-Horde Three enemies together
4-Horde Four enemies together
Roof Enemies underneath a hanging
platform making Mario bounce in
the ceiling
Gaps
Gaps Single gap in the ground/platform

Multiple gaps

Variable gaps
Gap enemy

More than one gap with fixed plat-
forms in between

Gap and platform width is variable
Enemies in the air above gaps

Pipe valley

Empty valley
Enemy valley

Pillar gap Pillar (pipes or blocks) are placed
on platforms between gaps
Valleys
Valley A valley created by using verticaly

stacked blocks or pipes but without
Piranha plant(s)

A valley with pipes and Piranha
plant(s)

A valley without enemies

A valley with enemies

Risk and Reward

Roof valley A valley with enemies and a roof
making Mario bounce in the ceiling
Multiple paths

2-Path A hanging platform allowing Mario
to choose differnt paths

3-Path 2 hanging platforms allowing Mario

to choose differnt paths

A multiple path where one path
have a reward and a gap or enemy
making it risky to go for the reward

Stairs

Stair up
Stair down
Empty stair valley

Enemy stair valley

Gap stair valley

A stair going up

A stair going down

A valley between a stair up and a
stair down without enemies

A valley between a stair up and a
stair down with enemies

A valley between a stair up and a
stair down with gap in the middle

Figure 1: The 3-horde and The Roof valley patterns.

long jump or a medium jump onto the first or last Goomba.
The medium jump onto the last Goomba can with good
timing allow the player to reach the pillar in the following
“Roof valley”-pattern. The “Roof valley”-pattern is provided
with a Koopa Paratroopa which, if timed properly, provides
a boosted jump out of the valley. If the player misses the
timing of the jump altogether, he is faced with a Paratroopa
in the valley in which he has failed to jump out of.

Figure 2: The 3-horde and the Pillar gap patterns.

Figure 2 also contains two patterns; a now familiar “3-
Horde” and a “Pillar gap”-pattern with Piranha plants forc-
ing the player to both time the jumps with the movement of
the plants in and out of the pipes movement as well as the
escalating height of the pipes. By using Piranha plants a
player may lose a life even though a correct “side-jump” be-
tween pipes normally would save him because of the plants
moving in and out of the pipes. If a designer wished make
this obstacle easier to pass he could remove the plants.

Figure 3: The Empty Valley and the Enemy Valley
patterns.

Figure 3 contains two patterns that share the same middle
pipe. If we compare the first “Valley empty”-pattern with



the second “Valley enemy”-pattern we see that the difference
in the height of the pipes suggest that the jump must be
more precisely coordinated in relation to the pipe in the
second pattern than in the first but if the player times the
jump as a landing onto the Goomba, the bouncing of the
Goomba will exert enough vertical speed that the ending
pipe will be overshot.

Figure 4: The Gap,the 3-Path, the Risk and Reward
and the Gap patterns.

In figure 4 we can see two simple “Gap”-patterns surround-
ing the more interesting combination of “2-Horde”, “3-Path”
and “Risk and reward” patterns. A power-up mushroom is
placed in the second horizontal platform in such a way that
two Goombas drops down upon the player if the timing is
not right. If the player chooses to jump onto the question
mark-block so that a Goomba is flipped the mushroom will
go the other way and maybe leave the screen (in the original
SMB, Mario can not go left to scroll the screen left) and the
player does not get his reward.

5.1.1 In depth descriptions

Due to the limited space avaiable we have chosen to de-
scribe only a few of the patterns in more depth (see table 2,
3, 4, 5and 6). We have chosen to exemplify the different
groups of patterns by picking one from each group (see table
1).

6. PLAN FOR PATTERN-BASED
MARIO LEVEL GENERATION

The previously suggested 23 patterns can be varied for
enhancement of the play experience in several ways. For
instance, the patterns with enemies can be varied by select-
ing different types of enemies. In SMB level 1-2 a Koopa
Troopa is followed by two Goombas which enables the player
to get variation in how to solve the situation; the player
can either short jump and medium jump over the “Enemy”
and “2-Horde” patterns or choose to jump onto the Koopa
Troopa twice to use its shell to knock out the two Goombas.
The prior solution is less risky than the latter and similairly
the reward is lower with the prior solution. The player may
also choose to run underneath the platforms and ignore the
mushroom. The third possible path is approach the two
Goombas a bit more cautiously and jump over them and
then use the third platform to avoid the last gap altogether.
Figure 5 may serve as an illustration on the previous situa-
tion replacing the Koopa Troopa with the two stand alone
Goombas. By recognizing a player choosing the solution
with the higher reward the PCG algorithm could generate
patterns with higher demand on player skill. Within each

Table 2: 4-Horde Pattern Description.

Enemies — 4-Horde

Problem

Solution

Using the pattern

Comments

The player can act and traverse
the level slowly without risk. The
player masters the long jump and
can therefore jump over multiple
enemies.

By placing four enemies in a
tight formation the maximum jump
length is not enough to pass over
the enemy which forces the player
to use timing to land on any of the
enemies for a second jump over the
remaining enemies.

Suitable use is on long platforms so
that the enemies do not fall down
any gaps. The pattern can also
be used in conjunction with val-
leys to limit the landing area of the
player. The pattern can be used to
force the player to time running ac-
tions if they are placed on high plat-
form allowing them to drop down
on Mario.

Not all enemy types are suitable
for this pattern. For instance,
enemies that Mario cannot jump
onto like Spiny may cause impas-
sible sections of a level. Power-ups
should always be considered when
applying this pattern. If a too
powerful power-up is placed in the
wrong position the difficulty of the
pattern can be drastically lowered.
This pattern should not be misin-
terpreted as two 2-Horde patterns,
the distance between the enemies in
the formation is crucial.




Table 3: Pillar gap Pattern Description.

Table 5: Risk and Reward Pattern Description.

Multiple paths — Risk and Reward

Gaps — Pillar gap

Problem

Solution

Using the pattern

Comments

The player can jump and traverse
vertical obstacles without risk. The
player masters high jumping and
can therefore jump over high obsta-
cles.

By placing a series of pillars with
a limited width a less skilled player
may overshoot a jump and miss the
pillar and fall down the gap. The
introduction of varying height of
the pillars the player needs to mas-
ter both vertical obstacles as well as
the length of the jump.

Suitable use is near the end of the
level so that Mario is high enough
to get to the top of the flagpole at
the end of a level.

No power-up can save the player.
But a skilled player may jump on
the side of the pillar and perhaps

bounce out of the gap danger.

Table 4: Enemy valley Pattern Description.

Problem

Solution

Using the pattern

Comments

The level layout is more or less lin-
ear and the player’s choice is lim-
ited.

Provide multiple paths where re-
wards, gaps and enemies are placed
so that the player is forced to choose
a specific way through this sec-
tion of the level. The player can
choose the specific path according
to his/her skill and risk appetite
as well as what the player consider
their “favourite” obstacles or ene-
mies to be. The need of a specific
reward or power-up may also affect
the choice.

The primary use is to create vari-
ation. The pattern could also be
used to introduce a needed reward
or power-up or to add a more re-
laxed section of the level.

The introduction of a different type
of decision making may affect the
player’s reaction time and therefore
the distance between the beginning
of the pattern and enemies and gaps
must be thought through.

Valleys — Enemy valley

Table 6: Stair up Pattern Description.

Problem

Solution

Using the pattern

Comments

The player can jump and traverse
vertical obstacles without risk. The
player can act and traverse the level
slowly without risk.

By fencing in an enemy between
two vertical obstacles they player is
forced to engage the enemy without
it falling through a gap. If a Koopa
Troopa is used and the player jumps
on it and then jumps on the shell
the player will risk losing power-ups
or a life due to the high-speeding
shell bouncing between the vertical
obstacles.

The pattern can be used most types
of enemies with the exclusion of
Bullet Bill unless the distance be-
tween the vertical obstacles are
placed with enough distance in be-
tween.

The pattern needs a sufficient plat-

form length.

Stairs — Stair up

Problem

Solution

Using the pattern

Comments

The player needs to be on a differ-
ent height and the player character
cannot jump high enough.

By providing tightly placed plat-
forms, blocks or pipes with increas-
ing height the player can jump onto
them and reach a higher position.
The pattern is usable before any
section where the player character
needs to be high enough but unable
to due to limitations in jump ability.
In SMB it is often needed before the
end of the level so that Mario may
reach the highest point on the flag-
pole. It is also useful for variation
before a multi-path pattern allow-
ing the player to drop down instead
of jumping up.

The stair should not be placed too
high to reach for the player charac-
ter or be so high that the player is
limited in jumping by the top screen
unless this is the intended effect.




Figure 5: Mario in a “Multiple path” facing “En-
emy”,“Enemy” and “2-Horde”.
L HARLON,

group of patterns a player that solves a pattern successfully
can be faced with a pattern from the same group one step
down the list. For all patterns the length of platforms can be
changed both for variation and for difficulty. Similarly the
patterns can with parametrization be varied in length and
height as well as difficulty in conjunction with adding risk
and rewards. Possible parameters are the number of gaps,
the length of a gap, the length of a platform, enemy types,
amount of enemies and if risk and reward should be present.
Figure 6 illustrates a 3-Path and a Risk and Reward pat-
tern combined. At the current stage, we have implemented

Figure 6: Mario leaving a “3-Path” and entering
“Risk and Reward”.

a composition-based level generator that randomly chooses
among the 23 patterns, and generates playable levels for In-
finite Mario Bros, (IMB), a public domain clone of Super
Mario Bros that has been used extensively in game AI and
PCG research [22]. It should be noted that IMB already
contains a random level generator function with predefined
sections. However, our level generator is based on existing
content that was placed in SMB trying to take advantage of
the effort that Nintendo put into designing and playtesting
its original successful product. By doing so we hope that an
experienced player will enjoy these levels as much as he did
playing the original SMB but that the variation the random-
ization provides will keep the player interested for a longer
time. In the immediate future, we will add functionality

for parameterising the patterns, and selecting patterns to fit
particular player profiles. We will also address the problem
of preserving playability while stacking patterns (see figure
7); this will likely be done through simulation-based evalu-
ation functions. We also intend to design metrics indicating
when a player master a skill enough to be faced with a cer-
tain pattern and how often.

Figure 7: Mario in an interesting combination of pil-
lars and “Stair-up”, “Stair-down” and “Roof” with-
out gaps.

7. CONCLUSION

In this short paper we have discussed the potential roles
of design patterns in PCG, and presented an analysis of the
levels in the original Super Mario Bros game into design pat-
terns. Further, we discussed ways of creating levels in Super
Mario Bros by combining these patterns. By ordering the
patterns in sequence of difficulty we can vary the content
in the new levels according to what a player does. In or-
der to further vary the content we can use parametrization
(platform length, gap length, enemy type, risk and reward)
in conjunction with a specific pattern. The patterns can be
placed in sequence or used together to create varied content.

8. ACKNOWLEDGMENTS

Thanks to the anonymous reviewers, Paul Davidsson, and
Gillian Smith for insightful comments on the paper.

9. REFERENCES

[1] Acornsoft. Elite. [Digital game], 1984.

[2] C. Alexander, S. Ishikawa, and M. Silverstein. A
pattern language — towns, buildings, construction.
Oxford University Press, New York, U.S.A., 1977.

[3] S. Bjork and J. Holopainen. Patterns in game design.
Cengage Learning, 2005.

[4] Blizzard North. Diablo. [Digital game], 1996.

[5] K. Compton and M. Mateas. Procedural level design
for platform games. In Proceedings of the 2nd
Artificial Intelligence and Interactive Digital
Entertainment Conference, 2006.

[6] H. Desurvire, M. Caplan, and J. Toth. Using
heuristics to evaluate the playability of games. In CHI
2004 Extended Abstracts on Human Factors in
Computing Systems, April 2004.



[7]

[24]

D. Dimovska, D. Wilson, K. Wong, L. Bojsen-Moeller,
L. Korsgaard, M. Lyngvig, and R. D. Capua. Dark
room sex game. [Digital game], 2008.

T. Fullerton. Game Design Workshop. Morgan
Kaufmann, New York, U.S.A., second edition, 2008.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
U.S.A., 1994.

Gearbox Software. Borderlands. [Digital game], 2009.
K. Hullett and J. Whitehead. Design patterns in fps
levels. In FDG ’10: Proceedings of the Fifth
International Conference on the Foundations of
Digital Games, pages 78-85, New York, NY, USA,
2010. ACM.

Interactive Data Visualization, Inc. Speedtree.
[Software], 2011.

P. Mawhorter and M. Mateas. Procedural level
generation using occupancy-regulated extension. In
Proceedings of the IEEE Conference on Computational
Intelligence in Games (CIG), 2010.

MicroProse. Civilization. [Digital game], 1991.
Nintendo. Super mario bros. [Digital game], 1985.

D. A. Norman. The design of everyday things. Basic
Books, New York, U.S.A., 2002.

Re-Logic. Terraria. [Digital game], 2011.

K. Salen and E. Zimmerman. Rules of Play. MIT
Press, Massachusetts, U.S.A., 2004.

G. Smith, M. Cha, and J. Whitehead. A framework
for analysis of 2d platformer levels. In Sandboz ’08:
Proceedings of the 2008 ACM SIGGRAPH symposium
on Video games, pages 7580, New York, NY, USA,
2008. ACM.

G. Smith, J. Whitehead, and M. Mateas. Tanagra:
Reactive planning and constraint solving for
mixed-initiative level design. IEEE Transactions on
Computational Intelligence and Al in Games,
3(3):201-215, 2011.

F. Spufford. Backroom Boys — The Secret Return of
the British Boffin. Faber and Faber Limited, Croydon,
U.K., 2003.

J. Togelius, S. Karakovskiy, and R. Baumgarten. The
2009 Mario AI Competition. In CEC ’10: Proceedings
of the IEEE Congress on Evolutionary Computation,
2010.

J. Togelius, M. Preuss, N. Beume, S. Wessing,

J. Hagelbick, and G. N. Yannakakis. Multiobjective
exploration of the starcraft map space. In CIG ’10:
Proceedings of the IEEE Conference on Computational
Intelligence and Games, pages 265-272. IEEE, 2010.
J. Togelius, G. N. Yannakakis, K. O. Stanley, and

C. Browne. Search-based procedural content
generation: a taxonomy and survey. I[EEE
Transactions on Computational Intelligence and
Games, 3:172-186, 2011.



