Procedural Content Generation Using Patterns
as Objectives

Steve Dahlskog!, Julian Togelius?

! Malmé University, 0. Varvsgatan 11a, Malmo, Sweden
2 IT University of Copenhagen, Rued Langaards Vej 7, 2300 Copenhagen, Denmark
steve.dahlskog@mah.se, julian@togelius.com

Abstract. In this paper we present a search-based approach for pro-
cedural generation of game levels that represents levels as sequences of
micro-patterns and searched for meso-patterns. The micro-patterns are
“slices” of original human-designed levels from an existing game, whereas
the meso-patters are abstractions of common design patterns seen in the
same levels. This method generates levels that are similar in style to
the levels from which the original patterns were extracted, while still al-
lowing for considerable variation in the geometry of the generated levels.
The evolutionary method for generating the levels was tested extensively
to investigate the distribution of micro-patterns used and meso-patterns
found.

1 Introduction

The study of Procedural Content Generation (PCG), i.e. how game content
such as levels, items, quests and characters can be created algorithmically, is
currently one of the most active topics within academic research on artificial
and computational intelligence in games. A large variety of methods have been
proposed to generate an even larger variety of types of game content, subject
to various objectives and constraints [1]. The work is motivated both by a real
industry need for lowering the cost and saving time of content production and
enabling endless user-adaptive games, and by academic interest in formalising
game design and building creative machines. A recent “vision paper” for PCG
research lists a number of open research challenges [2]. One of them is to learn
to imitate style: could you build a content generator that was shown a number
of examples of the creative output of a human or team of humans, and that then
learned to produce more artefacts in the same style that were clearly original
but still recognisably of the same style?

Another active research area has been that of game design patterns. A de-
sign pattern is a general concept, which has its roots in architecture, but has
been applied both to software design and to game design. Game design patterns
have so far been identified manually, and the investigation on how to integrate
patterns into PCG has just started.

In this paper we demonstrate how practical game design patterns can be com-
bined with procedural content generation to generate game levels that imitate

a certain design style, and report the results of a series of experiments using a
platform game benchmark. We have previously analysed the classic game Super
Mario Bros. (SMB) [3] and suggested a collection of patterns and a PCG tool
that produce levels by randomly picking copies of these patterns and modifying
them according to a desired length and difficulty level [4].

Our prototype is based on evolutionary computation, where we will search the
solution space of combinations of simple building blocks for levels that contain
structures at a higher level. This way, we introduce a certain measure of control
and constrain the shape of the final level through both the objective function and
the choice of building blocks, while allowing a significant amount of variation. In
the prototype the representation is relying on existing content in SMB, namely
on one tile wide vertical slices, which we will also refer to as micro-patterns. The
micro-patterns are extracted from the original SMB levels. A level is simply a
sequence (or string) of micro-patterns — this applies both to the original levels
and our generated levels. However, not any sequence is interesting but in our
prototype we search for specific sequences or patterns that exists in the original
game. These sequences will we refer to as meso-patterns and they are our search
objective for our evolutionary approach.

We have previously reported initial work on this idea in a workshop paper [5].
Compared to that paper, the current paper describes a more mature system, and
reports more in-depth results with several variations of the fitness function and
a better characterisation of the generator output.

1.1 Background

In the seventies, Alexander et al. proposed a pattern language for architectural
application on all levels (regions, cities, neighbourhoods, buildings and rooms)
thus allowing everybody the ability to express design. Not only structural and
material issues are covered but also life experience like the Street Cafe-pattern.
The pattern language consists of a set of problems in an environment together
with a core solution to its corresponding problem [6] thus giving a designer a
tool to handle reoccurring problems. This powerful idea has spread to other ar-
eas like object-oriented software development where Gamma et al. have defined
a set of templates for solving general design and programming problems [7]. In
the context of games have Bjork and Holopainen suggested an extensive col-
lection of patterns for game design [8]. Similarly, others have looked into game
mechanics [9] and specific game contexts like FPSs [10], RPGs [11], and ac-
tion games [12]. There have also been some attempts to formulate abstract level
design patterns that can be specialised to concrete metrics for different level
types [13].

Procedural content generation refers to the (semi-)automatic process of creat-
ing game content. One common approach to PCG is the search-based approach,
to use evolutionary computation or other stochastic global search/optimisation
algorithms [14] for searching the content space. An oft-encountered trade-off in
PCG is between control and variation. Methods that have a high variation in

output according to some measure usually afford little designer control. Varia-
tion can be measured as ezpressive range, the variation along relevant metrics of
generated artefacts [15, 16]. Control comes in several flavours: control over style,
player experience, difficulty or even playability (e.g. specifying that there is a
path from start to end of a level).

1.2 Examples of patterns

Fig. 1. Three consecutive patterns in SMB.

Because of the limited space available we can only briefly mention the pat-
terns that were found [4] in (SMB). The patterns can be grouped into 5 groups; 1)
Enemies and hordes, (single and multiple variations), 2) Gaps (single, multiple,
variable length, combined with enemies and structures), 3) Valleys (a boxed-in
area with structures, possible combined with enemies), 4) Multiple paths (struc-
tures horizontally dividing game space combined with enemies and rewards)
and 5) Stairs (structures supporting vertical repositioning combined with en-
emies and gaps). In figure 2 we can see two instances of the 3-Horde pattern
(Enemies) and in figure 1 we have a 3-Horde-pattern, a Pillar Gap-pattern and
a Enemy-pattern.

2 Rationale

Our application domain in this paper is the classic 2-dimensional platformer,
Super Mario Bros. (SMB) [3] and our generator is implemented using the Java-
based Mario Al Benchmark? [17].

The levels of SMB could be seen as 2D matrices where the cells contain
various items such as blocks, coins, enemies, etc.; this is also the internal repre-
sentation of levels in the Mario AI benchmark. Mario (when small) has the size

3 The benchmark is based on the clone Infinite Mario Bros by Markus “Notch” Pers-
son.

of 1 cell, and most levels have a length of 100-300 cells and a height of 20 cells.
A slice, or micro-pattern, is simply a vertical column of this array — a subarray
with length 1. By analysing the levels of the original SMB, we have identified a
library of such slices. New levels could be created by combining slices from this
library, drawn at random. Such levels would have some similarity to the original
levels, as they would not contain any slices that did not exist in the original
game. They would not, for example, contain slices where enemies stack on top
of each other or the player starts in mid-air. However, these levels would be
uninteresting at best, and probably unplayable, as they might contain too long
gaps, unclimbable walls, long stretches of nothing, and generally no discernible
structure. However, in the space of all possible sequences of slices there should
be many permutations that are well-designed, playable levels that are similar to
the original SMB levels not only on micro level but also on meso- and macro-
levels. How can we find those levels? In order to guarantee playability we punish
unplayable sequences.

2.1 Representation

Our level representation is a sequence of symbols of length 200, where each sym-
bol stands for a specific micro-pattern (a vertical slice) taken from the original
human created content. The slice is one tile wide and in our example we have a
slice containing a Goomba standing on a ground tile. This tile could be copied in
sequence two or three times to make a 2-Horde or 3-Horde pattern (as in fig. 2).

Fig. 2. To the far left we have a vertical slice (micro-pattern) with a Goomba on low
ground. To the left a sequence of copies of the same slice making up a 3-Horde meso-
pattern that in the original game can be found quite often as in World 8, Level 1 seen
to the centre-right and in World 1, Level 2 to the far right.

By adding new slices the solution space grows. The levels of the original
SMB contain fewer than 200 slices like this. In our representation, we use an

alphabet consisting of 23 frequently occurring micro-patterns. Most of the slices
come from unique-looking levels like W1L2 (the first level under ground) and
are not reused elsewhere in the game. The advantage of the representation is
the ease with which one can generate a level either by the constructive or the
generate-and-test approach [14]. One could for example base a constructive PCG
algorithm on a phrase-structure grammar with pre-checked production rules or
by randomly picking slices and evaluate according to constraints. However, we
will suggest another approach in the next section.

2.2 Evolutionary algorithm

The search-based approach taken in this paper is based on a fitness function that
rewards the presence of meso-patterns, the higher presence the likelier a member
is selected. We apply a simple p + A evolution strategy where p = A = 100 is
combined with single-point mutation and one-point crossover. In other words,
of a population of 200 we apply selection (discarding half of the population),
reproduction (keeping half of the population and using pairwise breeding to
generate new members), recombination (fixed one-point-crossover) and mutation
(the slice at a randomly chosen position in the level has its symbol replaced by
a randomly chosen slice).

2.3 Fitness function

In order to understand how our micro- and meso-patterns interact in the search
space we implemented three fitness functions (FF 1-3). The fitness functions
were designed in the following way; FF1) a simple uniform reward value for
every unique pattern, FF2) a simple uniform reward value for every occurrence
of patterns, and finally FF3) a non-uniform reward weighted value for every
occurrence of patterns. The first fitness function worked as a validation of the
strings indicating that they could be found (i.e. more than one out of our meso-
patterns can be found). The second fitness function was used to explore the
frequency of how meso-patterns “appear” in the search space (i.e. how common
are the different meso-patterns). The third fitness function was used to explore
how the use of weighted values affects the frequency of meso-patterns.

In order to have some input on the weights to use we chose a simple strategy
of calculate a weight by inverting the average occurrence of the patterns giving an
infrequent pattern a high weight and a frequent pattern a low weight. By doing
S0, we propose that we can counter the effect of normal distribution while picking
random symbols during the task of initiating and mutating the members of the
population. Another issue this strategy would counter, is the varying complexity
that the individual patterns have. If we would continue to use a uniform reward
strategy for the fitness function, complex strings would run a greater risk to be
starved to death in our population due the space it takes over uncomplicated
patterns (i.e. short patterns are easily fitted into a member in relation to a long
pattern). In order to find different variations of the patterns we designed a set
of 43 strings of symbols in different categories of the patterns (i.e. 5 categories

of patterns and 23 patterns [4]). These strings, (which we will refer to as rules)
were used for a simple linear search, covering each member of the population in
each generation.

3 Results and evaluation

We performed the experiments in three stages. First, we evolved a large number
of levels using the “unique patterns” version of the evaluation function (FF1).
We then repeated this experiment using the “all occurrences” version of the eval-
uation function (FF2). Based on these runs, we evaluated which micro-patterns
were most commonly used, and which meso-patterns were most commonly found.
These evaluations were used to calculate the weights for a weighted version of
the fitness function (FF3). The third and final experiment, using the weighted
version of the evaluation function, aimed to see if we could bring about that all
patterns were found in a more balanced way.

3.1 Finding patterns

Table 1. Fitness value variation for 1000 levels counting fitness value based on rules;
only one occurrence (FF1), multiple occurrences (FF2) and weighted multiple occur-
rences (FF3).

|Generations| MIN[MAX|MEAN[DEV. [MED]
o@®F1) |3 |8 [a61 [os1 5
10 (FF1) |5 |11 |7.47 [1.02 |7
100 (FF1) |8 |27 [14.94 [2.551 |15
500 (FF1) |8 |31 [18.18 [3.17 [18
9
4
7

1000 (FF1) 31 18.97 |3.23 |19

0 (FF2) 10 |57 1.12 |6
10 (FF2) 18 (1117 |1.74 |11
100 (FF2) [13 |86 [36.98 [10.46 |37
500 (FF2) |16 [183 [68.62 [30.17 |63
1000 (FF2) 18 [227 [82.17 [37.38 (73

0 (FF3) 4 202 |77.83 |36.16 |77

10 (FF3) 8 301 |121.92 (62.83 |118
100 (FF3) (20 |1030 |264.07 [149.64|241
500 (FF3) (34 |2361 [430.33 |348.98|337
1000 (FF3) (34 |2449 |486.20 [401.76|374

For each fitness function, we made 1000 independent runs and recorded the
fitness values based on the strings. The fitness value worked as a simple ”count
a rule when it is fulfilled”, but only the first time it occur in a level for FF1,

for every time it occurred in FF2 and with weighted values in FF3. We can see
that the evolutionary approach manages to find more meso-patterns over time.
In order to measure the effect of our efforts of guiding the evolution to find more
elaborate patterns we recorded which rules were present in the best member out
of our 1000 runs (see table 2).

Measuring the occurrences of a rule in large population should give an in-
dication on how complicated it is to generate an instance of a meso-pattern
(rule) in relation to the micro-patterns. Several of the meso-patterns use the
same micro-patterns and since the micro-patterns initial occurrence is based on
equal chance to be present in the population and a member we can be certain
that, given enough time, the search-based approach will affect the distribution
of micro-patterns.

Table 2. Found patterns (rules) in FF1-FF3 together with the calculated weight for
FF3 based on 1000 runs.

Pattern Mesa Straight [Multi-way

Occurrence in FF1|682 686 1001 239 193 50 93 68 193 168 239 197 132 136
Average in FF1 0.68 0.69 |1.00 0.24 (0.19 |0.05 |0.09 0.07 |0.19 |0.17 |0.24 (0.20 (0.13 |0.14
Occurrence in FF2(498 480 523 25 83 221 |329 11 83 37 25 13 120 127
Average in FF2 0.5 0.48]0.52 0.03 [0.08]0.22]0.33 0.01 |0.08 |0.04 [0.03 |0.01 |0.12 |0.13
Weight 2.01 2.08 |1.91 40 12.05|4.53 |3.04 90.91]|12.05|27.03|40 76.92|8.33 |7.87
Occurrence in FF3|1042 1118 |1317 574 264 317 (40 559 264 298 574 |589 697 |687
Average in FF3 1.04 1.12 |[1.32 0.57 [0.26 |0.32|0.04 0.56 |0.26 |0.30 [0.57 |0.59 (0.70 |0.69
Pattern Enemy Hordes Gaps

Occurrence in FF1(2605 1198 |572 2606 (1208 |525 [920 931 1007 (1007 |892 111 286 269 286
Average in FF1 2.61 1.20 |0.57 2.61 1.21 |0.53]0.92 0.93 |1.01 |1.01 (0.89 |0.11 (0.29 |0.27 (0.29
Occurrence in FF2(13751 |10411|1897 135848678 (722 |3694 4995 (8209 (8209 |3563 (14 83 68 132
Average in FF2 13.75 |10.4 |1.9 13.6 [8.68 [0.72]3.69 5 8.21 (8.21 (3.56 [0.01 (0.08 |[0.07 (0.13
Weight 0.07 0.1 0.53 0.07 [0.12 |1.39|0.27 0.2 0.12 |0.12 |0.28 |71.43|12.05(14.71(7.58
Occurrence in FF3| /44 50 8 444 |38 16 |o 90 93 93 0 1720 |44 33 88
Average in FF3 0.44 0.05]0.01 0.44 (0.03]0.02 |0.00 0.09 |0.09 |0.09 (0.00 |1.72 [0.04 |0.03 [0.09
Pattern Valley Stair Pipes

Occurrence in FF1([87 81 61 845 846 664 |705 716 66 47 43 46 61 67
Average in FF1 0.09 0.08 |0.06 0.85 [0.85 |0.66 |0.71 0.72 |0.07 |0.05 [0.04 |0.05 [0.06 |0.07
Occurrence in FF2|17 14 17 355 352 257 |289 287 |28 14 9 14 8 10
Average in FF2 0.02 0.01 |0.02 0.36 [0.35 |0.26 |0.29 0.29 |0.03 |0.01 (0.01 |0.01 (0.01 |0.01
Weight 58.82 |71.43 [58.82 2.82 [2.84 |3.89|3.46 3.48 |35.71(71.43|111.1|71.43|125 100
Occurence in FF3 (193 178 162 1233 [1197 (1110|915 1025 (5 43 57 12 966 30
Average in FF3 0.19 0.18 |0.16 1.23 [1.20 (1.11]0.92 1.03 [0.01 [0.04 [0.06 |0.01 |0.97 (0.03

For FF1, the distribution of fulfilled rules show promise on only 12 of the rules
(with occurrence value of 845-2605) and all rules have been fulfilled. However,
this is not sufficient to answer the question on how easy they are to find in
relation to each other. It is possible that the more complex rules are starved
to death in an evolutionary search. In order to explore this we ran FF2 and

counted multiple occurrences. The effect of counting multiple instances gives
the conclusion that Enemies and Hordes starves most other rules (except two
instances of Multi-way and only mildly two other Multi-way). Problematically
as it is, we apply weights for FF3 to counter the multiple-occurrence starvation
effect. The weights were calculated as the inverse function (1 when z # 0) of
the average occurrence. The result for FF3 show positive effect for most of the
meso-patterns (26 out of the 43 rules) except for the Gaps-, Enemy- and Horde-
patterns for which the result, on the other hand, is absolute catastrophic (in
table 2 the negative change is indicated in italic).

4 Expressive range

Smith & Whitehead [15] introduced the concept of expressive range of a level
generator and suggested a set of possible metrics that illustrates diversity of the
generated content. For PCG-tools it is interesting to show if the tool is able to
generate content that is not identical. Linearity and Leniency were suggested as
metrics for platform levels.

60

40

20+

o

20+

Leniency

40

60

=80

Linearity

Fig. 3. The distribution of levels generated with FF1 on the two expressivity dimen-
sions.

We have implemented versions of these metrics thus: Leniency is calculated
across the whole level with +1 for gaps and enemies, and the reverse for the
opposite —1 (for jumps with no gap associated, because jumps associated with
danger is harder than jumps without danger). Linearity will be counted from the
lowest point of the level, due to the fact that most micro patterns are connected
to that and therefore all micro patterns forcing the player to jump due to a height
difference of more than 1 tile will be considered as raising the non-linearity of
the level.

100+

=]
1

Leniency

Linearity

Fig. 4. The distribution of levels generated with FF2 on the two expressivity dimen-
sions.

In figure 3, 4 and 5 we show a density plot based on the two metrics; leniency
(LEN) and linearity (LIN) with 1000 generated levels for the fitness functions 1,
2 respectively 3 (FF1-3). FF1 have an expressive range in LEN of —75 to +50
with a concentration of levels around —20 to 0 as well as an expressive range in
LIN of —20 to +130 with a concentration in the range +50 to +100. FF2 gives
LEN: —75 to +100 and LIN: —20 to +170. FF2 has two clusters; LEN/LIN —75
to =25/ + 0 to +50 and —25 to 30/ + 85 to 160. Comparing the two fitness
functions (FF1 & FF2) expressiveness yields that FF2 can generate both more
difficult and more linear levels. The correlation that may exist is due to the gap
and enemy placement in linear space in SMB (and in the micro-patterns) and
it is more apparent due to the higher alignment to meso-patterns in FF2 than
in FF1, which is more affected by the normal distribution in the variation of
micro-patterns and get a less apparent cluster and range. FF3, however differ on
all ranges; LEN: —105 to +80 & LIN —50 to +160. The two clusters; LEN /LIN:
—100 to —30/—25 to +25 and —30 to +20/450 to 130, are less apparent divided
from each other and most of the individual members are not spread out as thin
as before. The weighted fitness value gives a wider expressive range but the levels
are more close if we observe the outliers suggesting that we could say that the
expressive spread is affected with weighted patterns. The levels are more easy
but also less linear. This is no surprise due to the low presence of meso-patterns
of Gap-, Enemy- and Horde-type.

5 Discussion

Our approach could be viewed from a level designer’s standpoint if we see the
design process as handled by our three pattern levels; 1) at the micro-level,

10

100+

50

Leniency

-100

-150-

Linearity

Fig. 5. The distribution of levels generated with FF3 on the two expressivity dimen-
sions.

:hiﬁﬁ ?ﬁ F% ﬁi:ﬁ:iﬂiﬂq ﬁlj: ﬁﬂ%ﬁﬁﬂ F'I‘q ;L']]llr:'i:jt; ?ﬂﬁﬁ noMmMmoOnommonnnrnomonomrmnmnne,

Fig. 6. An example of a generated level.

which contain the smallest representation level, in our approach the vertical
slices function, 2) at the meso-level, where the combined slices in a certain order
function to solve the challenges the designer wants to expose to the players
to, and 3) at the macro-level handling the flow and overall (play-)experience
of a level and/or game. If we implemented a planner that solved the issue of
deciding on order of meso-patterns, difficulty (perhaps with the aid of metrics like
leniency), training and educating the player, the full task of the level-designer,
namely; to “... use a toolkit or ‘level editor’ to develop new missions, scenarios,
or quests for the players. They lay out the components that appear on the level
or map and work closely with the game designer to make these fit into the overall
theme of the game” [18], could be solved for an entire game or genre.

In our fitness functions FF2 and FF3, we used weighted sums of the meso-
pattern counters. There are well-known problems with fitness functions based
on weighted sums, in particular that not all components are maximised at the
same rate. An alternative would be to treat the problem as a multi-objective
optimisation problem, and use specially designed evolutionary algorithms for
this purpose. However, most such algorithms are designed for only a handful of
objectives, which is problematic as our problem has dozens.

11

6 Conclusion

In this paper, we have introduced a pattern-based level generator for plat-
form games. The general principle is to identify both micro-patterns and meso-
patterns in the original game levels, represent new levels as combinations of
micro-patterns and search for such combinations that express as many meso-
patterns as possible. This way, micro-patterns are used as building blocks and
meso-patterns as objectives. This principle, and the generator based on it, can
easily be extended to a large range of different game types and game content
types. To validate and explore the workings of our prototype level generator,
we ran experiments with three different variations of our fitness function. We
found that the generator could easily find certain patterns whereas others where
harder to find, but that a rebalancing made it possible to find other patterns,
sometimes at the cost of more frequent patterns.

7 Acknowledgments

We would like to thank Noor Shaker for the generated level image.

References

1. Shaker, N., Togelius, J., Nelson, M.J., eds.: Procedural Content Generation in
Games: a Textbook and an Overview of Current Research. pcgbook.com (2013)

2. Togelius, J., Champandard, A.J., Lanzi, P.L., Mateas, M., Paiva, A., Preuss, M.,
Stanley, K.O.: Procedural content generation: Goals, challenges and actionable
steps. In: Dagstuhl Seminar 12191: Artificial and Computational Intelligence in
Games, Dagstuhl (2013)

3. Nintendo: Super Mario Bros. [Digital game] (1985)

4. Dahlskog, S., Togelius, J.: Patterns and Procedural Content Generation: Revisiting
Mario in World 1 Level 1. In: Proceedings of the First Workshop on Design Patterns
in Games. DPG 12, New York, NY, USA, ACM (2012) 1:1-1:8

5. Dahlskog, S., Togelius, J.: Patterns as Objectives for Level Generation. In: Pro-
ceedings of the Second Workshop on Design Patterns in Games. DPG 13 (2013)

6. Alexander, C., Ishikawa, S., Silverstein, M.: A pattern language — Towns, Buildings,
Construction. Oxford University Press, New York, U.S.A. (1977)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, U.S.A. (1994)

8. Bjork, S., Holopainen, J.: Patterns in Game Design. Cengage Learning (2005)

9. Adams, E., Dormans, J.: Game Mechanics: Advanced Game Design. Voices That
Matter. Pearson Education, Limited (2012)

10. Hullett, K., Whitehead, J.: Design Patterns in FPS Levels. In: FDG ’10: Proceed-
ings of the Fifth International Conference on the Foundations of Digital Games,
New York, NY, USA, ACM (2010) 78-85

11. Smith, G., Anderson, R., Kopleck, B., Lindblad, Z., Scott, L., Wardell, A., White-
head, J., Mateas, M.: Situating quests: design patterns for quest and level design
in role-playing games. In: Proceedings of the 4th international conference on Inter-
active Digital Storytelling. ICIDS’11, Berlin, Heidelberg, Springer-Verlag (2011)
326-329

12

12.

13.

14.

15.

16.

17.

18.

Cermak-Sassenrath, D.: Experiences with design patterns for oldschool action
games. In: Proceedings of The 8th Australasian Conference on Interactive Enter-
tainment: Playing the System. IE '12, New York, NY, USA, ACM (2012) 14:1-14:9
Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a generic method of evaluating
game levels. In: Proceedings of the AAAT Artificial Intelligence for Interactive
Digital Entertainment Conference. (2013)

Togelius, J., Yannakakis, G., Stanley, K., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. Computational Intelligence and Al
in Games, IEEE Transactions on 3(3) (2011) 172-186

Smith, G., Whitehead, J.: Analyzing the expressive range of a level generator. In:
Proceedings of the 2010 Workshop on Procedural Content Generation in Games.
PCGames ’10, New York, NY, USA, ACM (2010) 4:1-4:7

Shaker, N., Yannakakis, G., Togelius, J.: Crowdsourcing the aesthetics of platform
games. Computational Intelligence and Al in Games, IEEE Transactions on 5(3)
(2013) 276290

Karakovskiy, S., Togelius, J.: The mario ai benchmark and competitions. Compu-
tational Intelligence and Al in Games, IEEE Transactions on 4(1) (2012) 55-67
Fullerton, T.: Game Design Workshop - A Playcentric Approach to Creating In-
novative Games. Second edn. Morgan Kaufmann, New York, U.S.A. (2008)

