
A Multi-level Level Generator

Steve Dahlskog
Malmö University
Ö. Varvsgatan 11a

205 06 Malmö, Sweden
Email: steve.dahlskog@mah.se

Julian Togelius
IT University of Copenhagen

Rued Langaards Vej 7
2300 Copenhagen, Denmark
Email: julian@togelius.com

Abstract—Generating content at multiple levels of abstraction
simultaneously is an open challenge in procedural content gen-
eration. Representing and automatically replicating the style of
a human designer is another. This paper addresses both of these
challenges through extending a previously devised methodology
for pattern-based level generation. This method builds on an
analysis of Super Mario Bros levels into three abstraction levels:
micro-, meso- and macro-patterns. Micro-patterns are then used
as building blocks in a search-based PCG approach that searches
for macro-patterns, which are defined as combinations of meso-
patterns. Results show that we can successfully generate levels
that replicate the macro-patterns of selected input levels, and we
argue that this constitutes an approach to automatically analysing
and replicating style in level design.

I. INTRODUCTION

Procedural content generation in games (PCG) refers to
the algorithmic creation of game content, with no or limited
human input. Recent years has seen a marked increase in
interest in PCG in the game development community, where
it is now routinely used both for runtime level generation
in certain types of games (e.g. rogue-likes) and for offline
generation of certain types of content, such as vegetation
and terrains. This development is paralleled by a significant
increase in PCG research in academia. Unlike in commercial
game development, the focus tends to be on more ambitious
forms of PCG than what is currently seen in released games,
and using more complex methods [1].

In a recent overview paper, a number of long-term goals
and research challenges for PCG are described [2]. The pa-
per suggests the following grand goals of PCG: Multi-level
Multi-content PCG, PCG-based Game Design and Generating
Complete Games. It is argued that work addressing any of its
nine more concrete research challenges would contribute to
progress towards realising these grand goals of PCG. Further,
five very concrete actionable steps are listed, each of which is
envisioned to address one or several of the research challenges.

In this paper, we address two of the research challenges,
namely Representing Style and General Content Generators,
and one of the actionable items, namely Competent Mario
Levels. Representing Style refers to being able to create a
generative model of the style of a particular designer or a
particular design school, whereas General Content Generators
refers to being able to generate either different types of content
(on different levels of abstraction) for a single game or content
for multiple games. The Competent Mario Levels actionable
step refers to creating level generators for Super Mario Bros

that can create varied, interesting, good-looking, playable and
entertaining levels.

The way we address these challenges is to extend an
existing pattern-based level generator for Super Mario Bros. In
previous work, we have described a method which builds levels
for Super Mario Bros out of “micro-patterns”, i.e. thin level
slices, and uses an evolutionary algorithm to search for levels
that contain multiple instances of “meso-patterns”, which are
larger designed structures [3, 4, 5]. It was observed that while
this method generated playable levels with interesting micro-
structure, the levels lacked a sense of progression, unity or
other macroscopic properties. The working hypothesis of this
paper is that such macroscopic structure can be achieved with
an extension of this method by using objectives at a higher
abstraction level. This in turn requires that such objectives can
be extracted from existing game levels.

A. Contributions in this paper

In previous work, we have identified meso-patterns in
Super Mario Bros [3], and devised a search-based approach
to level generation in the Mario AI Benchmark where micro-
patterns are used as building blocks and meso-patterns as
objectives [4, 5]. In this paper, we introduce a third level
of abstraction, macro-patterns, defined as the occurrence and
sequence of meso-patterns. We also describe a level anal-
yser, which extracts patterns from existing levels. Finally, we
describe the results of experiments in evolving levels using
macro-patterns as objectives. For this purpose we have also
devised a new mutation operator for game levels based on
cutting and pasting micro-patterns.

II. BACKGROUND

Our work builds on previous work in both design-oriented
and technical game research. Here, we describe previous work
on PCG in games, design patterns, and the combinations of
these, and we also present the benchmark game used for the
experiments.

A. Procedural content generation in games

Game content refers to any game asset excluding non-
player character (NPC) behaviour and the game engine - for
example levels, rules, textures, narrative and in-game items.
PCG has recently attracted considerable interest in the digi-
tal game research community, as evidenced by hundreds of
publications and the establishment of a dedicated workshop
running annually since 2010. This is at least partly due to there



being multiple good reasons to attempt to create algorithms
that generate content, including: reducing the cost and time of
game development, enabling infinite and/or adaptive games,
studying game design by formalising human creativity, and
attempting to surpass such creativity. In the current context,
we are interested both in the computational study of game
design, and in creating fast algorithms that can reliably supply
a game with large amounts of quality content.

The last few years has seen a surge of interest in an
approach to PCG called search-based PCG, where evolutionary
algorithms or other global stochastic optimisation algorithms
are used to generate content [6]. The two most important
considerations here are content representation (how the geno-
type, e.g. levels, is represented as a phenotype, e.g. vectors of
integers, on which the variation operators work) and content
evaluation (how a fitness value is assigned to a content
artefact).

B. Design Patterns

Design patterns were initially proposed by Alexander [7],
an architect who created them with the intent to empower
individuals to express their ability to design. Design patterns
are basically a rather informal grammar containing a set
of descriptions covering reoccurring design problems in a
domain. This problem description is paired with a suggested
core solution which could be reused. In effect, the second
of the two components (problem & solution) is very versa-
tile due to the generalisation of the solution space. Design
patterns have been adopted in object-oriented analysis and
design [8], and thinking of software architecture in terms of
design pattern solutions has become very influential. Björk
and Holopainen later applied the ideas of design pattern to
game design, listing hundreds of generic game design patterns
in an influential book [9, 10]. Several authors have further
identified a number of game design patterns in specific game
genres [11, 12, 13, 14].

In the current paper we are principally interested in patterns
in level design, where levels are the structures that the player
character traverses (not to be confused with e.g. levels of
abstraction). Given the fact that games often are designed
artefacts put together with a purpose, several aspects of them
can be viewed as structures. For instance, rules govern the
process of play, whereas levels and game space is often
indirectly controlling the movement of the player, and objects
in games usually have a specific purpose effectively limiting
their use for the player. In relation to this, we could view
the content in a platform game (including levels) as structured
design objects, i.e. objects following design patterns.

C. Benchmark game

In this paper we will use the game Super Mario
Bros. (SMB) [15] as a benchmark. The game was first released
by Nintendo in 1985, and is a side scrolling 2-dimensional
“platformer” game. SMB has become very influential through
setting a number of standards for the platformer genre, and
has helped bring about the genre’s popularity. In the game,
the protagonist Mario (or his brother Luigi) moves from left to
right, jumping onto platforms or other structures to overcome
obstacles or onto enemies to squash them. SMB consists of 8

TABLE I. PATTERNS FOR SUPER MARIO BROS. GROUPED BY
THEME [3].

Enemies
Enemy A single enemy
2-Horde Two enemies together
3-Horde Three enemies together
4-Horde Four enemies together
Roof Enemies underneath a hanging platform making Mario

bounce in the ceiling
Gaps

Gaps Single gap in the ground/platform
Multiple gaps More than one gap with fixed platforms in between
Variable gaps Gap and platform width is variable
Gap enemy Enemies in the air above gaps
Pillar gap Pillar (pipes or blocks) are placed on platforms between

gaps
Valleys

Valley A valley created by using vertically stacked blocks or pipes
but without Piranha plant(s)

Pipe valley A valley with pipes and Piranha plant(s)
Empty valley A valley without enemies
Enemy valley A valley with enemies
Roof valley A valley with enemies and a roof making Mario bounce

in the ceiling
Multiple paths

2-Path A hanging platform allowing Mario to choose different
paths

3-Path 2 hanging platforms allowing Mario to choose different
paths

Risk and Reward A multiple path where one path have a reward and a gap
or enemy making it risky to go for the reward

Stairs
Stair up A stair going up
Stair down A stair going down
Empty stair valley A valley between a stair up and a stair down without

enemies
Enemy stair valley A valley between a stair up and a stair down with enemies
Gap stair valley A valley between a stair up and a stair down with gap in

the middle

worlds, each containing 4 levels, where the three first levels
span from a starting point (left-most) to the end by a castle
entrance (right-most) and the fourth level ends in a “boss-
fight”. As there is no interface for NPC control or level
generation in the original game, we build on the Mario AI
Framework, a software toolkit which was developed for the
Mario AI Competition [16, 17, 18]. This software is based on
Infinite Mario Bros, a clone of SMB that focused on the non-
“boss-fight”-levels. In SMB the levels have a varied length of
148 to 377 with an average of 200 tiles. Various approaches
to generate levels for the Mario AI Framework have been
proposed, as surveyed in [17, 19]; approaches that explicitly
copy the style of SMB levels include Markov chains [20].

III. LEVEL DESIGN PATTERNS IN MARIO

We have previously analysed the content of the origi-
nal game with the aid of a framework for 2D Platformer
games [21] and heuristics for playability [22] and suggested a
set of (meso-) patterns that SMB levels consists of [3]. We
identified patterns on two levels, micro-patterns and meso-
patterns. Micro-patterns are simply vertical slices of the level.
Meso-patterns are features such as groups of enemies, gaps to
jump over, valleys boxing in parts of the level, allowing the
player to choose multiple paths and elevating Mario with the
aid of stairs. In this paper, we also introduce macro-patterns,
which are sequences of meso-patterns.

A. Micro-patterns

The content in SMB can be viewed from Mario’s stand-
point, namely, horizontally from left to right one tile at the



Fig. 1. To the left we have a excerpt from SMB World 1–Level 1 which can
be replicated with only two micro-patterns (slices) marked with black frames
to the right. It also exemplifies a 2-Path pattern.

moment. If one imagine the levels as one tile wide slices and
collect them in a library, the first level, even though it is 199
slices “long” only 27 different slices are used. These slices
could be viewed as micro-patterns since they, in themselves,
are designed content, and they often contain several pieces put
together like a Goomba, a question-mark-box, a brick-block or
something else that is either an obstacle, or aid to the player.
In fig 1, the left-most slice or micro-pattern contain mostly
empty space (allowing Mario to jump) but also to land on a
Goomba or a ground-tile. If Mario were to walk into this slice
the player either loses a life or a power-up effect. These micro-
patterns works in a similar way as the tiles when decomposing
the problem of generating dungeons [23].

Fig. 2. Examples of similar but still unique slices. The two to the right can
be used to create the structure of Fig. 1 and a sub-set of them can be used to
create most of Fig. 4

B. Meso-patterns

Fig. 3. Two meso-patterns (to the left; a sparse Risk and Reward (W1L1)
and to the right a dense 3-Path (W4L1).

The next meaningful level are the meso-patterns. These are
perhaps best explained as instances of the different patterns
previously identified [3]. A meso-pattern is a feature which
requires or affords some player action, like three Goombas

walking in a single file formation on ground. If the micro-
patterns are to be seen from Mario’s viewpoint, the meso-
patterns could be viewed more like how the player sees the
content: sequences of slices making up most of a screen.

It is important to note that meso-patterns are a bit more
abstract than micro-patterns; each meso-pattern could be in-
stantiated in multiple ways, by different configurations of
micro-patterns. For example, a valley could consist of 5 or 10
slices, but still be a valley. If our micro-patterns are identified
by an integer then a meso-pattern is a string of specific integers
like 5− 1− 1− 7 or 1− 8− 8− 5− 8− 11. (These particular
strings are taken from the original game.)

C. Macro-patterns

Fig. 4. A Macro-pattern example from SMB, stretching over two screens,
where a 2-Path and a Gap continues on to a Risk and Reward and a Gap onto
a 3-Path with an end consisting of a 2-Horde.

The meso-patterns are helpful to understand the content of
SMB but does not convey more macroscopic level structure.
For that we suggest a higher level – the macro-pattern level.
On this level the relation between different meso-patterns
becomes clear and the placement of individual power-up-
mushrooms can balance difficulties that lies beyond the current
screen. In figure 4 we can see an example of how patterns
are connected together over more than one screen. At this
level of abstraction the level designer can provide the player
with a greater play experience by providing a steady and
controlled difficulty curve, teach the player how to tackle new
obstacles and enemies. “Pedagogic” macro-patterns, where a
meso-pattern first appears in a simpler form and then in a more
complex form, so that the player can first overcome the simpler
challenge to then be ready to face a harder challenge of the
same type, are common among the original SMB levels. Story
arcs could be partly implemented, or at least supported, on the
macro-level as well. Given this, it might be possible to argue
for further abstraction levels covering the “Worlds” of SMB
or perhaps the full game or even the whole game franchise.

For example, if we describe the first level of SMB, i.e.
World 1–Level 1 (W1L1, see Fig. 5) as a sequence of meso-
patterns we get the following: Risk and Reward, (Empty) Pipe
valley, (2-Horde) Pipe Valley, 2-Path, Gap, Risk and Reward,
2-Horde, Risk and Reward, Risk and Reward, (Empty) Stair
valley, (Gap) Stair valley, Roof valley, Stair up.

D. Multi-Level Level Generation

In our suggested approach we utilise a “bottom-up”-
approach where the micro-level is the foundations for the
meso-level which in turn makes up the macro-level. Our
method is a search-based PCG approach [6], described below.

1The last string is for instance seen in Fig. 1



Fig. 5. Level 1, World 1 from the original Super Mario Bros game, reimplemented in the Mario AI Framework (SMB-W1–L1).

Fig. 6. Level 1, World 8 (SMB-W8–L1) (mid 200 tiles, start and ending empty ground is cropped).

IV. PATTERN-BASED LEVEL GENERATION

We have previously presented two level generators for the
Mario AI Framework that builds on the identified patterns.
The first of these was a simple constructive pattern-based level
generator that combined pre-fabricated instances with minor
variations depending on assigned parameters on difficulty and
reward settings [3]. The second generator takes a search-
based approach, with a representation based on micro-patterns
and objective function based on the existence and number of
meso-patterns [4]. Two versions of the fitness function were
developed: one which simply counted every occurrence of
every meso-pattern, and one which only counted the number of
individual meso-patterns that could be found in the level. It was
found that levels that scored highly on either of these metrics
were perceived as better-designed than those that scored lower,
but also that those that were only optimised for the first
variation (every occurrence) became rather dense. After further
experimenting [5] with its multi-objective fitness functions, we
here extend it to cover the macro-pattern level as well.

V. AUTOMATIC LEVEL ANALYSIS

In order to be able to generate levels that replicate the
sequence of meso-patterns from existing levels, we first need
to be able to extract this sequence. For this purpose we built a
level analyser. The level analyser takes any Super Mario Bros
(or Infinite Mario Bros) level encoded in a specific simple file
format and returns a list of all the micro-patterns (slices) in the
level and their frequencies, and the order of all meso-patterns.
This is technically an array of integers where each integer
represents a particular meso-pattern out of those identified
in [3], but can be read out as e.g. “{pipe-valley, three-horde,
three-horde, stair}” etc. The same pattern detection code is
used here as is used in the objective functions.

VI. METHODS

In this section we stepwise go through our approach, by
stating the principal parts; representation, algorithm and fitness
function.

A. Representation

Our level generator output is a single SMB level with
the length of 200 and a height of 14 tiles. The internal
representation of a level is an array of integers, where each
integer represents a micro-pattern (see Fig. 2 for examples).

B. Evolutionary Algorithm

Our search-based approach uses a fitness function that
rewards the presence of meso-patterns with a simple µ + λ
evolution strategy where µ = λ = 100 combined with the
operators single-point mutation and one-point crossover. This
means, when we use a population of 200 members, that we
discard the 100 members with lowest fitness and use the best
100 members as parents for breeding pairwise. All of the
newly generated offspring are also subject to mutation. We
consequently deem members with unplayable content as unfit
for breeding by setting their fitness value extremely low.

C. Variation operators

Fig. 7. A comparison between the effect of the mutation-operators.

In previous work our mutation operator simply exchanged a
single micro-pattern for another, randomly selected [5]. Given
the relative length of a micro-pattern (1 slice = 1 block),
in relation to a full level in SMB (148-377 slices) and the
nature of our initial mutation operator; exchanging a single
slice for another for the whole member (meaning a mutation
effect of 0.5% out of 200 slices) we opted to incorporate a
more aggressive mutation (blue line in Fig. 7). Instead of the
minimalistic mutation operator working as an exchange of a
single slice exchange (red line) we apply a sequence exchange.
The new mutation operator change a set of five slices at a
random starting position with a new random set of five slices.

D. Fitness functions

Our fitness functions measure the presence and order of
patterns and are based on string search. A fitness value is



assigned to each level based on the presence of specific sub-
strings representing meso-patterns taken from SMB. A sub-
string is typically seen in Fig. 1 made up with micro-patterns
(see Fig. 4). Since these sub-strings vary in length and com-
plexity some patterns are harder to find in the solution space
than others. This, in turn, yields that we need to understand
how to define the fitness function according to the wanted
outcome. We focus our attention on the difference between
finding all patterns we have defined in solution space (with
the fitness function FFMeso) without rewarding any specific
pattern over another. From there we utilise a weighted value
based on previous experiments [5] (called FFMesoB[alanced])
in order to understand the effect of the added macro-level
works in the solution space (called FFMacro). FFMacro is
based on a relative reward value so that it rewards the correct
order of meso-patterns according to the original SMB meso-
pattern order in addition to how FFMesoB reward sub-strings.
In short, if the order of meso-patterns in a member corresponds
to the one in the target level it is more probable that it
is chosen for breeding. Note that we are only looking for
instances of meso-patterns and not the exactly same pattern
implementations as in SMB.

VII. RESULTS

Our experiments are evaluated in three ways: (1) We
measure the meso-pattern (type and how many) for the best
member of a 1000 generation search (200 members with the
length of 200 micro-patterns); (2) we compare the fitness
values distribution for the fitness functions; and (3) we apply
expressive range analysis (see section VII-B).

In order to get some input on diversity aspects of the
different fitness functions we have generated 100 levels for
each fitness function and compare them to each other. FFMeso
favours simple patterns like enemies and hordes and seldom
provide anything more complex like multi-way and pipes.
FFMesoB and FFMacro provide better overall coverage of
patterns. FFMesoB and FFMacro does not differentiate very
much but generally FFMacro provide some improvements on
longer patterns (indicated in italic in table II).

FFMeso generally perform uniform values. It should be
noted that since this fitness value favours low ranked rewards
and is then compared to the weighted macro fitness function
very little variation is gained (see Table II to see the pattern
distribution) it should not be directly compared value by value
with the other two fitness functions which are more compatible
in regard to comparison. In that aspect both fitness functions
can generate macro-pattern ordered in a level but FFMacro
perform a bit better reaching a macro-pattern fulfilment of
a maximum 7/12 and a common level of 4/12 whereas
FFMesoB only reaches 6/12 (see Table III). FFMesoB has
a higher maximum altogether because it can fit in more high
value patterns in the level. FFMacro tries to find the right
pattern there which could be improved by rewarding macro
pattern order more, but of course then running the risk of
starving the meso-patterns altogether.

Figures 11 show a number of generated levels for visual
comparison. These were all generated with level 1-1 (as seen
in figure 5) as target level. It can be seen from these pictures
that the levels generated with the Macro fitness function appear

to have more large-scale structure, or at least more variation
on the macro scale.

A. Efficiency

FFMeso and FFMesoB can run in fair online environments
generating a level with the length of 200 based on a 200
member population and 1000 generations in 4 seconds with
the current implementation in Java running in NetBeans IDE
on a 2011 MacBook Pro. However, the FFMacro, have to
account for relative reward values and an extra data structure
(that keeps track of the order in relation to the wanted order)
which affects execution time tenfold effectively placing this
approach in the offline PCG application range.

B. Expressive Range

The concept of expressive range could be seen as the
approach to visualise and measure the variation of the gen-
erated content according to a representative metric [24, 19].
This would allow understanding the diversity and uniqueness
of a level generator. In our case we will apply Smith’s &
Whitehead’s metrics Linearity and Leniency [24].

Fig. 8. The distribution of levels generated with FFMeso on the two
expressivity dimensions.

Our implementation works as follows; Leniency is calcu-
lated across the whole level with +1 for gaps and enemies,
and −1 for jumps without danger. Linearity will be counted
as +1 for any change from the floor of the level, due to the
fact that most micro patterns is connected to that. In Fig. 8
the output of FFMeso and in Fig. 9 the output of FFMacro
are displayed using 100 unique levels from the two different
fitness function used.

Comparing the FFMacro and FFMeso we can see that they
occupy a different expressive space with FFMeso generating
levels more similar internally than the other two fitness func-
tions. FFMeso has a linearity range of 80 and leniency range
of 80 whereas FFMacro has 75 and 105 for linearity and
leniency respectively. Comparing their (FFMeso and FFMacro)
individual space we can see there is very little overlap in their
expressive range.

Given this (see Fig. 10) we can conclude that the Linearity
of the FFMesoB and FFMacro are more variated but also



TABLE II. FOUND PATTERNS (RULES) IN FFMESO, FFMESOB AND FFMACRO BASED ON 100 LEVELS AND 1000 GENERATIONS PER LEVEL.

Pattern Mesa Straight Multi-way
Occurrence in FFMeso 16 11 132 4 3 3 1 0 3 2 4 1 2 1
Average in FFMeso 0.16 0.11 1.32 0.04 0.03 0.03 0.01 0 0.03 0.02 0.04 0.01 0.02 0.01
Occurrence in FFMesoB 50 50 61 131 39 7 2 90 39 39 131 141 51 53
Average in FFMesoB 0.5 0.5 0.61 1.31 0.39 0.07 0.02 0.9 0.39 0.39 1.31 1.41 0.51 0.53
Occurrence in FFMacro 28 55 57 137 39 8 3 90 39 38 137 143 62 62
Average in FFMacro 0.28 0.55 0.57 1.37 0.39 0.08 0.03 0.90 0.39 0.38 1.37 1.43 0.62 0.62
Pattern Enemy Hordes Gaps
Occurrence in FFMeso 2129 1510 221 2354 1310 97 553 753 1380 1380 545 4 6 2 11
Average in FFMeso 21.29 15.10 2.21 23.54 13.10 0.97 5.53 7.53 13.80 13.80 5.45 0.04 0.06 0.02 0.11
Occurrence in FFMesoB 34 3 1 29 3 1 0 1 0 0 0 112 22 11 25
Average in FFMesoB 0.34 0.03 0.01 0.29 0.03 0.01 0 0.01 0 0 0 0.112 0.22 0.11 0.25
Occurrence in FFMacro 32 2 0 40 5 2 0 3 4 4 0 103 21 17 24
Average in FFMacro 0.32 0.02 0 0.4 0.05 0.02 0 0.03 0.04 0.04 0 1.03 0.21 0.17 0.24
Pattern Valley Stair Pipes
Occurrence in FFMeso 0 0 1 18 21 18 10 18 0 0 0 0 0 1
Average in FFMeso 0 0 0.01 0.18 0.21 0.18 0.1 0.18 0 0 0 0 0 0.01
Occurrence in FFMesoB 35 72 53 97 94 133 139 134 5 20 39 19 231 111
Average in FFMesoB 0.35 0.72 0.53 0.97 0.94 1.33 1.39 1.34 0.05 0.2 0.39 0.19 2.31 1.11
Occurence in FFMacro 38 90 86 79 89 129 102 90 7 19 40 17 223 117
Average in FFMacro 0.38 0.9 0.86 0.79 0.89 1.29 1.02 0.9 0.07 0.19 0.4 0.17 2.23 1.17

TABLE III. COMPARISON OF FOUND MACRO PATTERNS

MIN MAX MEAN DEV No. 0 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
FFMesoB 0 6 2.6 1.52 14 11 12 37 19 4 3 0
FFMacro 0 7 3.2 1.53 7 10 9 24 36 9 4 1

Fig. 9. The distribution of levels generated with FFMacro on the two
expressivity dimensions.

Fig. 10. The distribution of levels generated with FFMeso, FFMesoB and
FFMacro on the two expressivity dimensions.

less hard to complete (probably due to the lower number of
enemies present in these levels see table. II). However, since
the distribution of different patterns are more like the original
game SMB the FFMesoB and FFMacro are probably more
interesting for a player.

VIII. FUTURE WORK

Given the set of generators available to the PCG-research-
community more in dept studies of the diversity of the different
approaches would yield welcome knowledge. For instance,
how well does the generator fulfil the intended goal and
how does that relate to other generators abilities. Can we,
with the use of metrics or empirical tests order the different
generators on a spectra ranging from variation to control?
Does implementation of different but similar techniques place
generators close to each other on that spectra?

Considering the multi-level search-based and bottom-up-
approach applied in this paper it would be interesting to
compare it with other possible approaches for multi-level
generators. Especially, top-down and constructive approaches
would be a welcome comparison. The top-down approach
could function in different ways, ranging from a more au-
tomated version were the user supplied parameters and the
generator suggested levels to a more user centred approach
where the designer marked our space in a level and picked
pattern definitions and placed them in an order suited to the
designer and mixing designer work with constraints on the
generator to fulfilling patterns and even down to level where
the designer defines new meso- and micro-patterns.

IX. CONCLUSION

In this paper we have suggested a search-based PCG
method and level generator for platform games that incorpo-
rates three levels of patterns, namely; 1) micro-, 2) meso-
and 3) macro-patterns. These three levels handles different
aspects of the level generation ranging from low level detail



to full level overview. To demonstrate the effect the multi-
level level generator we ran a set of experiments with three
different fitness functions; FFMeso (rewarding meso-patterns),
FFMesoB (a balanced version using weights derived from a
previous version [5]) and FFMacro (using the same weights but
with an added extra reward if the order of the patterns we in
alignment to the original SMB game). During this exploration
of the solution space we noted that some patterns are affecting
the presence of other patterns and that the expressive range
can vary based on the used fitness function. The added macro-
level have increased the run-time of the level generator tenfold
making the generator more suitable for offline generation
rather than online.

REFERENCES

[1] J. Togelius, N. Shaker, and M. J. Nelson, “Introduction,”
in Procedural Content Generation in Games: A Textbook
and an Overview of Current Research, N. Shaker, J. To-
gelius, and M. J. Nelson, Eds. Springer, 2014.

[2] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas,
A. Paiva, M. Preuss, and K. O. Stanley, “Procedural con-
tent generation: Goals, challenges and actionable steps,”
in Dagstuhl Seminar 12191: Artificial and Computational
Intelligence in Games. Dagstuhl, 2013.

[3] S. Dahlskog and J. Togelius, “Patterns and Procedural
Content Generation: Revisiting Mario in World 1 Level
1,” in Proceedings of the First Workshop on Design
Patterns in Games, ser. DPG ’12. New York, NY, USA:
ACM, 2012, pp. 1:1–1:8.

[4] ——, “Patterns as Objectives for Level Generation,” in
Proceedings of the Second Workshop on Design Patterns
in Games, ser. DPG ’13, May 2013.

[5] ——, “Procedural Content Generation Using Patterns
as Objectives,” in Proceedings of EvoGames, part of
EvoStar., A. I. Esparcia-Alcázar, Ed., 2014.

[6] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne, “Search-based procedural content generation:
A taxonomy and survey,” IEEE Transactions on Com-
putational Intelligence and Games, vol. 3, pp. 172–186,
2011.

[7] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern
language – Towns, Buildings, Construction. New York,
U.S.A.: Oxford University Press, 1977.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, U.S.A.: Addison-Wesley, 1994.

[9] S. Björk and J. Holopainen, Patterns in Game Design.
Cengage Learning, 2005.

[10] S. Björk, “Game Design Patterns 2.0,” Web page, March
2013. [Online]. Available: http://gdp2.tii.se/

[11] K. Hullett and J. Whitehead, “Design Patterns in FPS
Levels,” in FDG ’10: Proceedings of the Fifth Interna-
tional Conference on the Foundations of Digital Games.
New York, NY, USA: ACM, 2010, pp. 78–85.

[12] D. Cermak-Sassenrath, “Experiences with design patterns
for oldschool action games,” in Proceedings of The 8th
Australasian Conference on Interactive Entertainment:
Playing the System, ser. IE ’12. New York, NY, USA:
ACM, 2012, pp. 14:1–14:9.

[13] C. Lewis, N. Wardrip-Fruin, and J. Whitehead, “Motiva-
tional game design patterns of ’ville games,” in Proceed-

ings of the International Conference on the Foundations
of Digital Games, ser. FDG ’12. New York, NY, USA:
ACM, 2012, pp. 172–179.

[14] C. Dristig Stenström and S. Björk, “Understanding Com-
bat Design in Computer Role-Playing Games,” in Pro-
ceedings of the Second Workshop on Design Patterns in
Games, ser. DPG ’13, May 2013.

[15] Nintendo, “Super Mario Bros.” [Digital game], 1985.
[16] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The

2009 Mario AI Competition,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), 2010.

[17] N. Shaker, J. Togelius, G. N. Yannakakis, B. G. Weber,
T. Shimizu, T. Hashiyama, N. Sorenson, P. Pasquier, P. A.
Mawhorter, G. Takahashi, G. Smith, and R. Baumgarten,
“The 2010 mario ai championship: Level generation
track,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 3, no. 4, pp. 332–347, 2011.

[18] S. Karakovskiy and J. Togelius, “The Mario AI Bench-
mark and Competitions,” Computational Intelligence and
AI in Games, IEEE Transactions on, vol. 4, no. 1, pp.
55–67, 2012.

[19] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. To-
gelius, “A comparative evaluation of procedural level
generators in the mario ai framework,” in Proceedings
of the 9th International Conference on Foundations of
Digital Games, ser. FDG ’14, 2014.

[20] S. Snodgrass and S. Ontañón, “Experiments in map
generation using markov chains,” in Proceedings of the
9th International Conference on Foundations of Digital
Games, ser. FDG ’14, 2014.

[21] G. Smith, M. Cha, and J. Whitehead, “A Framework
for Analysis of 2D Platformer Levels,” in Sandbox ’08:
Proceedings of the 2008 ACM SIGGRAPH symposium on
Video games. New York, NY, USA: ACM, 2008, pp.
75–80.

[22] H. Desurvire, M. Caplan, and J. Toth, “Using Heuristics
to Evaluate the Playability of Games,” in CHI 2004
Extended Abstracts on Human Factors in Computing
Systems, April 2004.

[23] C. McGuinness and D. Ashlock, “Decomposing the level
generation problem with tiles,” in IEEE Congress on
Evolutionary Computation. IEEE, 2011, pp. 849–856.

[24] G. Smith and J. Whitehead, “Analyzing the expressive
range of a level generator,” in Proceedings of the 2010
Workshop on Procedural Content Generation in Games,
ser. PCGames ’10. New York, NY, USA: ACM, 2010,
pp. 4:1–4:7.



Fig. 11. FFMacro #26 MC: 4, fitness value: 441 (lowest).

Fig. 12. FFMacro #28 MC: 6, fitness value: 1315.

Fig. 13. FFMacro #35 MC: 0, fitness value: 850.

Fig. 14. FFMacro #82 MC: 7, fitness value: 1485.

Fig. 15. FFMacro #98 MC: 6, fitness value: 2332 (highest).

Fig. 16. FFMesoB #6 MC: 0, fitness value: 545.

Fig. 17. FFMesoB #30 MC: 3, fitness value: 409 (lowest).

Fig. 18. FFMesoB #64 MC: 6, fitness value: 2065 (highest).

Fig. 19. FFMeso #42 MC: 2, fitness value: 202 (highest).

Fig. 20. FFMeso #99 MC: 0, fitness value: -47 (lowest).


