
Patterns, Dungeons and Generators

Steve Dahlskog
Malmö University

Faculty of Technology and
Society

Malmö, Sweden
steve.dahlskog@mah.se

Staffan Björk
Göteborg University

Department of Applied
Information Technology

Göteborg, Sweden
staffan.bjork@gu.se

Julian Togelius
New York University

Department of Computer
Science and Engineering

New York, NY, U.S.A
julian@togelius.com

ABSTRACT
This paper analyses dungeons, of the varieties commonly
found in role-playing games, into several sets of design pat-
terns at different levels of abstraction. The analysis fo-
cuses on mechanical patterns that could be either straight-
forwardly instantiated or recognized by a well-defined pro-
cess. At the most concrete level a set of fundamental com-
ponents were identified, followed by a long list of micro-
patterns which can be directly instantiated. Shorter lists
of meso- and macro-patterns, which can be identified me-
chanically, are also identified. The direct motivation for
this analysis is to find building blocks and objectives for
a search-based procedural dungeon generator, however we
believe the analysis can be useful for understanding this
class of game artifacts in general. In particular, the con-
straints on patterns being instantiable or recognizable leads
to a stricter pattern analysis than many other attempts at
analyzing game design.

Keywords
design patterns, dungeons, procedural content generation

1. INTRODUCTION
Design patterns have become an important tool for an-

alyzing and reasoning about game design. They provide a
relatively formal way of talking about game design, which
is appealing particularly for those who want to automate
the analysis and/or generation of game content. In recent
research, a method has been devised for procedurally gener-
ating platform game levels based on design patterns [19, 21].
This method is based on the idea that design patterns can be
ordered into different levels of abstraction, from smaller and
more concrete patterns to larger and more abstract patterns.
The larger patterns can be instantiated in multiple ways
through different combinations of smaller patterns. Levels
can then be generated through searching for combinations
of smaller patterns that yield certain larger patterns.

This paper addresses the domain of dungeons, the type of
levels with a spatial puzzle quality first introduced in Dun-
geons & Dragons [31] and typically found in “roguelikes”
such as Rogue [59], Moria [40], and Hack [24], and com-
puter role-playing games (RPGs) such as Bard’s Tale [37]
and Ultima [28]. We identify a relatively large set of de-
sign patterns at different sizes and levels of abstraction –
micro-, meso- and macro-patterns. The motivation for car-
rying out this analysis is to find patterns that can be used
for pattern-based or search-based dungeon generation and
for this reason the granularity is finer and the level of de-
tail of the pattern collection is higher than what is typical
for pattern collections. We believe the pattern analysis car-
ried out here has value for other purposes as well, such as
understanding the design space and design affordances of
dungeons as a game artifact.

2. RELATED WORK
Due to the approach chosen in this paper the related work

is connected to several different research areas related to
games. In the following section an overview of these will be
presented together with examples of relevant games.

2.1 Game Spaces and Dungeons
Exploration or movement through spaces are common game-

play features in games. In line with this, Aarseth calls spa-
tiality a defining element of games and argues for a pos-
sible use in classifying games according to how the space
is implemented in the game [2]. Exploring the concept of
Game spaces, Nitsche introduces three concepts relevant to
this paper in the form of labyrinths (linear or unicursal),
mazes (branching or multicursal) and arenas (open struc-
tures with areas of free movement bounded by surround-
ing enclosement) [50]. Similarly, Aarseth call games where
an avatar has to be moved from a starting to end position
“place-oriented” and identifies hubs, open landscapes, and
uni- or multicursal structures as components of quest-based
games [1].

A common game space in fantasy RPGs is the dungeon.
The dungeon has been present in fantasy RPGs more or
less from its introduction in Dungeons & Dragons [31] in
1974 until today. The following description is provided in
a later edition of the game: “A Dungeon is a group of
rooms and corridors in which monsters and treasures can
be found.” [32]. This definition is arguably rather open and
could include other types of game spaces from other types
of games, like bunkers, castles and other buildings in, for
example First-Person Shooters. For the purposes of this pa-



per, we accept this definition and the consequence that it
might include similar spaces in other games, but we base
our analysis only on games that are commonly agreed to fall
into the RPG genre.

The ubiquity of dungeons in RPGs indicate that they solve
recurring problems in game design, and provide a key part
of the player experience. From a player perspective, it is
likely that the rather confined space of the dungeon pro-
vides interestingness by allowing exploration of a non-trivial
layout of space, and excitement due to incorporated compo-
nents such as enemies, traps, and treasures. The constraint
on player movement can create additional tension and ex-
ploring dungeons may in many cases also impose a level
of resource management (e.g. considering how much provi-
sions and consumables should be brought or when attempt
to resupply should be made). Similarly, it is likely from
a designer’s viewpoint that explicitly limiting the player’s
available choices and access to information helps structure
the order in which players gains access to the game (and
thus the story). By providing access to certain areas only
in a specific order, it becomes easier to combine a storyline
with the relatively free exploration of non-dungeon parts
(“overworld”) of many RPGs.

2.2 Design Patterns
Design patterns is the idea that certain design solutions

can be described on an abstracted level so they can both
be re-used in similar contexts and casual relations between
them can be identified. They were originally developed for
architecture by Alexander et al. to help end users take
part in design processes [3] as part of a large movement
focusing on understanding design methods (cf. [39]). The
use of design patterns for understanding games was first
introduced by Kreimeier [41] and then followed by Björk
& Holopainen who developed a collection of approximately
300 design patterns [13]. Similar approaches include the 400
rules project [9] and the game ontology project [62]. This
paper follows a convention to mark patterns through the use
of small caps.

While the collection developed by Björk & Holopainen in-
clude some patterns appropriate for analyzing the design of
dungeons in RPGs, other more specific collections related
to this have been developed. Hullett & Whitehead [34]
explored the design of levels in First-Person Shooters and
created a collection of 10 design patterns which have later
been incorporated in the collection initiated by Björk &
Holopainen [12]. Smith et al. analysed 20 games and the
resulting design patterns were grouped into level and quest
patterns in RPGs [56]1.

Gameplay design patterns have been combined with the
Mechanics-Dynamics-Aesthetics framework [35] to explain
how patterns dealing with concrete rules or game elements
can cause dynamic behaviors and through this aesthetical
experience. This has been used to both explore camara-
derie [10] and pottering [44] in games and to compare simi-
larities and difference between the game X-COM: UFO De-
fense [46] and its remake XCOM: Enemy Unknown [26, 16].

2.3 Procedural Content Generation
Procedural content generation (PCG) in games refers to

methods for algorithmically creating game content (e.g. games,

1http://rpgpatterns.soe.ucsc.edu/

rules, worlds, levels, items, etc.). PCG might be used inde-
pendently or to assist a human designer, with human design
objectives and partial designs as input. While many early
digital games featured some kind of PCG, it has only be-
come an active area of research in academic settings within
the last few years [54]. PCG has been used in many games of
different genres, but is perhaps most central to games rely-
ing on runtime generation dungeons like Diablo [15], Rogue
and Ultima I. Even as early as in 1979, methods for gener-
ating dungeons were present in both pen-and-paper RPGs
(Advanced Dungeons & Dragons [30]) as well as in digital
games (Akalabeth: World of Doom [52]).

A recent paper surveyed procedurally generated dungeons
showing previous work from a technical perspective, amount
of control over the generative process, the output and re-
sults. In the paper, the authors argue for researching dun-
geons due to its close relation to successful games [61]. Pro-
cedural dungeon generation has also been surveyed in the
textbook on PCG in games [54]. A wide variety of different
methods have been applied to generating dungeons. These
include evolutionary algorithms [5, 4, 45, 60, 6], grammar
expansion [22, 23], cellular automata [38], constraint solv-
ing [33, 55], and various ad-hoc methods such as dungeon
diggers and binary space partitioning [54].

2.4 Design Patterns used in PCG
Given that design patterns are formalizations of game and

level design into relatively simple and independent compo-
nents, it stands to reason that they would be useful in con-
tent generators. A content generator is after all exactly a
generative formal design theory. Thus, several recent exper-
iments in procedural content generation use the language of
design patterns to describe parts of the content generator or
the artifacts it produces [25, 51].

Dahlskog et al. have taken the metaphor further and de-
veloped a search-based level generator based on design pat-
terns on different levels of abstraction [19, 20]. The proto-
type implementation, which generates levels for Super Mario
Bros (SMB) [47], uses patterns on the micro-, meso- and
macro-levels. Micro-patterns are simple vertical slices of
SMB levels, meso-patterns are larger features such as enemy
hordes or “pipe valleys”, and macro-patterns are sequences
of meso-patterns. The patterns at each level of abstraction
are composed of multiple patterns of a lower level of ab-
straction. This configurations allows levels to be created
through searching the space of sequences of micro-patterns
for occurrences of macro-patterns. In effect, micro-patterns
are used as building blocks and meso- and macro-patterns
as objectives.

3. CLASSIFICATION OF DUNGEONS
In order to argue for what a dungeon looks like we sur-

veyed a large number of dungeons in a set of RPGs and
gathered empirical data by brute force incremental analysis
similar to [14]. The approach focused on identifying patterns
based on game space and game mechanics related to dun-
geons in each game. The approach included actual game
playing, primarily on emulators, supported with strategy
guides, maps and Youtube clips to minimize playtime out-
side the actual dungeons (i.e. minimal time was committed
to exploring story or solving puzzles). We picked games
from an exhaustive source [8] and correlated this source
with the game magazine Computer Gaming World ’s lists



Table 1: Fundamental Components
Tile The basic unit of space in a dungeon. Individual Tiles have Boolean attributes associated with

them: Passable and Seethru.
Level A rectangular space of Tile.
Wall Tile The base classification of Tiles in a Level. Tiles belonging to this category are not Passable and

not Seethru. The Base Content of a Tile in Rogue is “Rock”.
Ground Tile A classification for Tiles that are Passable and Seethru.
Item A game object that can be in a Tile but which can also be picked up, carried, and dropped in other

Tiles.
Agent A game object that can perform actions, e.g. moving and attacking, and is located on a specific

Tile. The player’s avatar is an Agent as are monsters. They typically hinder other from entering
the Tile they are in, i.e. they temporary remove the attribute Passable from the Tile they are in.

Line-of-
Sight(A,B)

A Boolean function returning if all Tiles on a straight line between point A and B in a Level are
Seethru.

Traversable(A,B) A Boolean function returning if a player can move between point A and B in a Level. A Route
is a traversal solution and the length of different Routes may be needed for some design patterns.

Sequenced(A,B) A Boolean function returning if point A must be visited before point B in a Level.

Figure 1: A dungeon in The Legend of Zelda (Con-
nected Rooms).

Figure 2: A dungeon in Rogue (Rooms & Corridors).

Figure 3: Dungeons in Ultima I (Maze) and Ultima
II (Labyrinth).

Figure 4: A dungeon in Diablo (Open area).

of RPGs [53] to have a rich data set. All in all, 91 games
released between 1975-1993 were analyzed in detail but sev-
eral more modern games will be used as examples in the text.
The motivation for focusing on our analysis on the period
between 1975 and 1993 is due to resource limitations as well
as these early games have a stronger focus on actual dun-
geons whereas modern games have the possibility of adding
open world-like areas with the effect that the player spend
more time there than in dungeons (c.f. The Elder Scrolls V:
Skyrim [11]). We intend to add more games to the list in
the future as we extend the project with content generation.

In essence, the surveyed games showed similarities on the
account of topology and the different dungeons could be clas-
sified and grouped into five different types. Commonly the
topology could be described as scarce or dense depending on
how much traversable game space the dungeon layout con-
tains (dense dungeons have more traversable space).

1. Connected Rooms is a type of dungeon that is most
common in classic text-based adventure games. The
player moves from interesting sites (rooms) without
explicit corridors, pathways or tunnels to the next site.
Games like Colossal Cave Adventure [18] and Zork [43,
36] but also The Legend of Zelda [49] (see Fig. 1)
have such dungeons; they are efficiently mapped with
graphs.

2. A Rooms & Corridors dungeon is often scarce with a
small set of rooms connected with non-branching cor-
ridors. Typical examples of this type of dungeons are



present in Rogue (see Fig. 2) and roguelike games from
the 1980-ies. Corridors are functional game space and
events (combat) can take place there. If the game al-
lows the player to dig through walls, graphs will not
be sufficient to map the game space and 2D-matrices
are needed.

3. Labyrinths are unicursal structures with a single path
leading through the dungeon. Earlier games like Ul-
tima II [29] (see Fig. 3). These dungeons are often
dense and demand 2D-matrices for mapping.

4. Mazes are multicursal layouts with multiple paths lead-
ing through the dungeon. Both earlier and later games
have this kind of topology. It is often dense and games
like Akalabeth: World of Doom and Ultima I have
these kinds of dungeons (see Fig. 3).

5. Open area-dungeons consists of extremely open space
(for a dungeon) with obstacles (e.g. thin walls) that
hinders free maneuvering, but in comparison with the
other types of dungeons, the tactical maneuvering have
greater importance. Corridors are uncommon and if
one considers the traversable space of these dungeons
they are very dense. Games like Telengard [42] and
Diablo (see Fig. 4) are typical for this kind of dungeons.

4. PATTERNS
After surveying the 91 games, the next step was to identify

design patterns within these related to the level, or dungeon,
design. However, the domain of the study needed to be de-
limited to a manageable size and an emphasis was placed
on the Rooms & Corridors, Labyrinths, and Mazes classi-
fications. More specifically, we decided on studying dun-
geons as they can appear in two-dimensional games where
movement primarily takes place horizontally, and is char-
acterized by exploration in constrained spaces and progres-
sion. Further, we restricted ourselves to games where the
dungeons can be specified as combinations of multiple tiles,
though movement between the tiles may or may not be
pseudo-continuous. This definition includes dungeons in
classic CRPGs such as early games in the Legend of Zelda
series and Final Fantasy [57] series as well as roguelikes like
Rogue, Nethack [58] and Diablo. We are excluding games
with a large amount of vertical moment, in particular plat-
formers like Super Mario Bros, and games which promi-
nently feature three-dimensional exploration like Tomb
Raider [17]. Furthermore, we are looking at patterns that
exist in multiple games, not just one or a few. Even so, all
the 91 games analyzed continued to be used as sources when
possible.

Design patterns provide abstract descriptions of solutions
to common problems. Although this abstraction can eas-
ily be contextualized by human designers given a specific
design problem, the same does not apply to systems that
procedurally generate solutions. The strategy we applied to
bridge this issue was to introduce several layers of interre-
lated patterns where the lowest levels have a low degree of
abstraction and therefore can be easily instantiated or rec-
ognized by an algorithm, making the patterns useful as part
of a procedural dungeon generator. Previously Dahlskog &
Togelius [19, 20] and Ferreira & Toledo [25] have done so in
other domains. As a result, the pattern analysis is here in
some senses more rigorous and formal than similar pattern

analyses found elsewhere, but also more limited. In relation
to the different levels of the Mechanics-Dynamics-Aesthetics
(MDA) framework [35], the focus was squarely on mechani-
cal patterns, omitting dynamical or aesthetic ones.

As the immediate motivation for this study is to find a
set of patterns that can be used for content generation, we
needed to place constraints on the patterns we found. A
first constraint we set up was to use a set of fundamental
components and that patterns should be described in terms
of these components and other patterns. This implied a hi-
erarchy of patterns which lead to a classification of patterns
as either micro-patterns, meso-patterns or macro-patterns
similar to what was done earlier by Dahlskog et al. [19].
The relation between these is that meso-patterns can be
built out of configurations of multiple micro-patterns, and
macro-patterns can be built out of combinations of micro-
and meso-patterns. Micro-patterns have the further con-
straint that they should be mechanically instantiable: it
should be possible for a constructive algorithm to instan-
tiate any of those patterns at any given position in a tile
by simply “dropping it in” without analyzing more than the
immediately neighboring tiles.

If should be noted that the collection presented here is
non-exhaustive. The patterns presented are however suffi-
cient to create the dungeons with all the main features found
in RPG dungeons. When reading the tables, note that most
entities are classified as being more specific versions of other
entities and this is indicated by listing the more general en-
tity in parenthesis after an entity name.

4.1 Fundamental Components
For the context of this paper, two Boolean attributes are

relevant for Tiles: Passable and Seethru. Passable Tiles
can be both entered and left while Passable are those that
can be seen through as well as allow ranged attacked to pass
through them. These and several other basic concepts can
be found in table 1.

4.2 Micro-patterns
The Micro-patterns introduced here make use of types

that describes categories of Micro-patterns. For example,
all patterns classified as Space create areas where players
can move and individual Micro-Patterns make use of this
type to describe how they can be combined with other pat-
terns to create larger areas where players can move around.
A list of identified micro-patters can be found in table 2.

4.3 Meso-patterns
While Meso-patterns are also mechanical in the sense that

they can be observed from static instances of a game in
progress (and thus identified by a static evaluation func-
tion), they are abstract in the sense that their existence
relies on combinations of Micro-patterns. Many of the pat-
terns mentioned in this section (and the next) have already
been documented as patterns earlier (cf. [12, 56, 34]), al-
though in some cases under other names. However, those
descriptions were not specific enough to be the basis for
an intended dungeon generator so alternative versions are
presented here. Our list of identified meso-patterns can be
found in table 3.

4.4 Macro-patterns
The highest level of abstraction used in this collection



Table 2: Micro-patterns.
Space A Space is a group of connected Tiles that share the same attributes and optionally other design

features such as topological properties or gameplay functionality. The simplest Space is simply one
Tile.

Corridor (Space) A Corridor is a series of horizontal or vertical Ground Tile. The end points of a Corridor can
be connected to other Spaces. In Rogue Corridors connect Rooms but in other games like Ultima
I (see Fig. 3) Corridors is the main spatial component and Rooms are missing.

Connector
(Space)

A Connector is a 1 Ground Tile long Corridor that is used to let passages in dungeons turn
or allow intersections by being connected to other Spaces.

Room (Space) A Room consists of several Ground Tiles but wider than a Corridor and allow for more freedom
in movement.

Door (Space) The Door is a barrier that has two states; “open” or “closed”. Open doors are Passable and Seethru
while closed door are neither. Connection to other Spaces are typically in a north-sound or west-east
direction. In Diablo Enemies does not notice the player character through Doors. Some Doors
have a connected key that allow for a third state “locked”. Some games have “breakable” Doors
which puts the door in a constant “open” state.

Hidden door
(Space)

Hidden door is a Door that functions like a Wall until it has been revealed.

Key (Item) [56] A Key is a Item allowing the ability of altering any or a specific Door’s state regarding being
“locked”.

Props (Space) Props are Ground Tiles with decorations but no extra functionality. Doors in Rogue are Props!
Obstacles (Item) Obstacles occupy Tiles and hinder Agents from entering them. They can be modeled as Items

that cannot be picked up and make Tiles temporary lose any Passable attribute like Agents but
can also be modeled as Agents that cannot perform actions. They may be destroyable or movable.
Examples include boulders in Rogue.

Installations
(Props)

Installations are Props (or Obstacles) that allow actions, typically by the players’ avatars when
they are next to them, but Installations can also provide actions to other Agents or be activated
by the game system. Example includes fountains in roguelikes and mana pools in Diablo.

Containers (In-
stallation) [56]

Containers allow caches of Items to be accessed from the Tiles they are placed in. While they
typically are Installations they can also be Items. Like Doors, Containers may be locked
so possession of Keys or abilities to pick locks may be need to have access to the Items inside
Containers. The Legend of Zelda: A Link to the Past [48] has Chests that need Keys to be
unlocked while Nethack provides a multitude of ways to open locked Chests, none which involve
Keys.

Stairs (Installa-
tion)

Stairs are Installations that allow movement away from the current Level. This is typically to
another Level which requires the position of a entry point on that Level. When movement back
is possible the natural design solution is to have Stairs on the entry point which leads back to the
original Stairs Tile. If this is not possible, a Prop indicating the entry point can provide diegetic
consistency [12]. In several games this vertical movement affects the difficulty or strength of the
opposing Enemy.

Impassable Space
(Space)

An Impassable Space a group of connected Tiles that are not Passable but Seethru and thereby
allows Line-of-Sight through them. In Diablo the lava lakes works as Impassable terrain.

Traps (Installa-
tions) [56]

Traps are typically hidden and perform a one-time attack on Agents entering the Tile they
are placed in. Traps are typically hidden until activated or revealed, and may be disarmed when
revealed. They are typically modeled as Installations with automatic activation but could also
be created as Agents that cannot move. Examples of Traps include bear traps in Rogue and pits
in Nethack.

Enemies (Agents) Enemies are simply Agents whose primary behavior is to attack players’ avatars. A main di-
chotomy regarding Enemies are if they can move or not.

Spawn Points (In-
stallation) [56]

Spawn Points are Installations from which Enemies appear. Generators in Gauntlet [7] are
Spawn Points.

Portals (Installa-
tions) [56]

Portals allow instantaneous movement between to spatially separated points in a level. They
can be modeled as Stairs which may be either Props or Obstacles and can either work only in
direction or both directions. The Bard’s Tale games include Portals in their dungeon design.



Table 3: Meso-Patterns
Choke Points
(Space) [12, 34, 56]

Choke Points are Tiles that are the only connections between two different parts of a Level, or in
other words: a Tile C is a Choke Point if there exists Tiles A and B so that Traversable(A,B)
is true but all Routes require passing through C. Choke Points can be created from Doors or
Portals and allow sequences of Sequenced relations to be constructed; a Choke Points C
between A and B enforce Sequenced(A,C ) and Sequenced(C,B). Choke Points larger than
Tiles can be constructed through placing Spaces such as Rooms behind other Choke Points.

Special Rooms
(Room)

These are Room created together with specific content such as Items or Enemies in them as well as
possibly having restrictions on access to them. Shops in Nethack is an example of a Special Room;
it is only accessible through a Choke Point, includes a Shopkeeper and have Installations on all
Tiles to handle buying and selling Items. Beehives is another example from the same game which
populate a Room with Enemies in the form of Killer Bees and Queen Bees together with Royal
Jelly Items.

Dead Ends
(Space)

Dead Ends are locations from which players must move through previously explored areas. The
simplest form of Dead End is constructed by placing a Choke Point between a Ground Tile
and the rest of a Level. However, other Spaces such as Corridors or Rooms can also be the
Dead Ends after a Choke Point. This pattern is subjective to the amount of gameplay that is
provided behind the Choke Point, no or little gameplay can make a larger Space into Dead Ends
while a small Space with rich gameplay is less of a Dead End (cf. the Shop in Special Rooms
pattern.)

Conditional Pas-
sageways (Choke
Point) [12, 56]

Conditional Passageways are Tiles that are only Passable when a character has a special skill
or Item. They need to be Choke Points to avoid functionally becoming equivalent to Obstacles.
The possibility of Conditional Passageways necessitate the consideration of a Conditionally
Traversable(A,B) function. The presence of Conditional Passageways can make Choke
Points directional in that they only are Choke Points when moving from A to B but not when
moving from B and A. Conditional Passageways can be created through the use of Doors and
keys but Pokémon [27] provides an example of another solution: a Bicycle is needed to go on
“Cycling Road” (Kanto and Sinnoh regions) and Seaside Cycling Road.

One-Way Travel
(Route) [12]

This is design solution which makes a Route between A and B so that Traversable(A,B) is
true while Traversable(B,A) is false. This is typically done through Portals or Stairs but the
introduction of one-way Doors is another possibility.

Flanking Routes
(Route) [12, 34]

These Routes offer alternatives to what is perceived as the most direct Route between Space
A and B. They can be created through first creating a Route that is Traversable(A,B) and
then create another Route which is less obvious. This latter feature can be achieved by making
the Route longer, hiding it through the use of Secret Doors, or making it Conditionally
Traversable(A,B) through the use of Conditional Passageways.



are Macro-Patterns. These are pattern defined through the
use of the fundamental components and lower-level patterns,
typically focusing on longer periods of gameplay or — some-
what paradoxically — specific gameplay aspects that depend
on a combination of circumstances. Like in the case of Meso-
Patterns, they have already been identified in a variety of
other games. Table 4 contains our list of macro-patterns.

5. DISCUSSION AND CONCLUSIONS
The patterns presented above are only a sample of the pos-

sible patterns for procedurally generating dungeons. Many
more, e.g. Arenas, Boss Monster Dungeon, Multi-
Level Dungeon, and Secret Areas, could have been in-
cluded, though that would require a longer paper format.
However, one can ask what the benefits of the presented
framework here provides given that several of the games
examined already create procedurally generated dungeons.
However, the pattern-based content generation approach al-
lows us to build generators that respect design constraints
and implement patterns on different levels, unlike the rela-
tively unstructured output of many dungeon generators.

The pattern collection provides an abstract model of level
design in “dungeon crawl” RPGs. These patterns were con-
structed after reviewing 91 games using dungeon so they re-
flect actual design practice of game designers. As such they
present a model usable for both designers and researchers,
and can support either manually, procedurally generated
dungeon designs or a mixed-method approach. Although
the pattern collection does not yet reach the level of ab-
straction used by Aarseth or Nitsche (i.e. [1] and [50]), we
believe further work can define labyrinths, mazes, and hubs
as patterns and potentially as part of systems for PCG dun-
geons. A first indication of how such patterns would look
can be gleamed from the Labyrinth and Hub-and-Spoke
patterns by Smith et al. [56].

While the meso- and macro-level patterns have been de-
scribed so that implementing them should be fairly unprob-
lematic, in several cases alternatives have been provided.
This shows how patterns can be implemented in different
ways to achieve the same gameplay functionality and offers
designers choices to use the most appropriate solutions.

One of the pattern presented, Sniper Locations, was
actually not found in the examined games. It was included
to show how the pattern collection can be extended to sup-
port additional types of gameplay (which in this case al-
ready exists in other genres) through introducing patterns
building on already existing patterns. While this can also
be done through adding new fundamental components or
micro-patterns, this has a larger risk of fundamentally chang-
ing the design so resulting gameplay no longer is seen as
being part of the genre.

On a more theoretical level, the model of using Micro-,
Meso-, and Macro-patterns show how game design practice
can be analyzed in greater detail and be described to a level
where different levels of abstract on the “mechanical” level
of design patterns can be implemented in code for dungeon
RPGs. In future work we aim at showing how Meso-patterns
can be given the requirement to be mechanically recogniz-
able, i.e. it should be possible for an algorithm to recog-
nize all instances of any given meso-pattern in a dungeon
through a direct evaluation function. We hope that, despite
the limited scope, the added rigor might be useful outside of
procedural content generation as well since it shows how the

knowledge contained in many previously identified patterns
can be rephrased to be usuable more directly in implemen-
tation.

Concluding, the collection of patterns presented here pro-
vide an overview of level design for dungeons to a level of
granularity that supports the design of PCG dungeon sys-
tems. While implementation of such a system is the next
step in our work, we believe this collection has a value in
describing dungeon level design through a tiered model that
can also support manual construction of dungeons as well as
provide a tool for further analysis of dungeon level designs.

6. REFERENCES
[1] E. Aarseth. From Hunt the Wumpus to Everquest:

Introduction to Quest Theory. In Proceedings of the
4th International Conference on Entertainment
Computing, ICEC’05, pages 496–506, Berlin,
Heidelberg, 2005. Springer-Verlag.

[2] E. Aarseth. Allegories of space: The question of
spatiality in computer games. In F. von Borries, S. P.
Walz, and M. Böttger, editors, Space Time Play:
Synergies Between Computer Games, Architecture and
Urbanism: the Next Level, pages 44–55. BirkHäuser,
2007.

[3] C. Alexander, S. Ishikawa, and M. Silverstein. A
Pattern Language: Towns, Buildings, Construction.
Oxford University Press, New York, August 1977.

[4] D. Ashlock, C. Lee, and C. McGuinness. Search-based
procedural generation of maze-like levels.
Computational Intelligence and AI in Games, IEEE
Transactions on, 3(3):260–273, 2011.

[5] D. Ashlock, C. Lee, and C. McGuinness. Simultaneous
Dual Level Creation for Games. Computational
Intelligence Magazine, IEEE, 6(2):26–37, May 2011.

[6] D. Ashlock and C. McGuinness. Automatic generation
of fantasy role-playing modules. In Proceedings of the
2014 IEEE Conference on Computational Intelligence
and Games. IEEE, August 2014.

[7] Atari Games. Gauntlet. [Digital game], 1985.

[8] M. Barton. Dungeons and Desktops: The History of
Computer Role-playing Games. A K Peters Ltd, 2008.

[9] H. Barwood and N. Falstein. 400 Rules Project. Web
page, February 2015.

[10] K. Bergström, S. Björk, and S. Lundgren. Exploring
aesthetical gameplay design patterns: camaraderie in
four games. In A. Lugmayr, H. Franssila, O. Sotamaa,
C. Safran, and T. Aaltonen, editors, MindTrek, pages
17–24. ACM, 2010.

[11] Bethesda Game Studios. The Elder Scrolls V: Skyrim.
[Digital game], 2013.

[12] S. Björk. Gameplay Design Patterns 2.0. Web page,
February 2015.

[13] S. Björk and J. Holopainen. Patterns in Game Design.
Charles River Media game development series. Charles
River Media, 2005.

[14] S. Björk, S. Lundgren, and J. Holopainen. Game
Design Patterns. In Proceedings of the 2003 DiGRA
International Conference: Level Up, 2003.

[15] Blizzard North. Diablo. [Digital game], December
1996.

[16] A. Canossa, S. Björk, and M. J. Nelson. X-COM:
UFO Defense vs. XCOM: Enemy Unknown— using



Table 4: Macro-Patterns
Quick Re-
turns [12]

Quick Returns intend to let players explore a part of a Level but offer a quick way of return-
ing to previously explored parts after reaching a certain point. This can be modeled by designing
so that Tiles A and B are Traversable(A,B) (or Conditionally Traversable(A,B)) with
a certain minimum length but the solution for Traversable(B,A)) is shorter. This is typically
achieved through constructing Traversable(A,B) through a number of Choke Points but pro-
viding One-Way Travel from B to A or a Conditional Passageway at B that activates a
shorter Conditionally Traversable(B,A) than A had to B. The Portals to the town in Diablo
and the Castle of Ordeals are examples of Quick Returns.

Backtracking
Levels [12]

Somewhat misnamed as the pattern can be applied to parts of Levels, Backtracking Levels
denote design solutions where players need to move from Tile A to B and then return following
basically the same Route. Backtracking Levels can be constructed from inserting a chain of
Choke Points between A to B and making B part of a Dead End. Backtracking Levels can
also be applied to chains of Levels, the goal of Rogue is to descend through Levels until one finds
the amulet of Yendor and then ascend back up to the starting point.

Sniper Loca-
tions [12, 34]

Places advantageous to making ranged attacks against Enemies classify as Sniper Locations.
These can most easily be created by having two Spaces connected by an Impassable Space.
However, Sniper Locations should be relatively safe also in that Enemies cannot quickly reach
them. The use of Secret Doors, Conditional Passageway or Routes of a certain minimum
length between the two Spaces can achieve this.

gameplay design patterns to understand game
remakes. In Proceedings of the Ninth International
Conference on the Foundations of Digital Games,
2014.

[17] Core Design. Tomb Raider. [Digital game], 1996.

[18] W. Crowther. Colossal Cave Adventure. [Digital
game], 1976.

[19] S. Dahlskog and J. Togelius. Patterns and Procedural
Content Generation: Revisiting Mario in World 1
Level 1. In Proceedings of the First Workshop on
Design Patterns in Games, pages 1:1–1:8, New York,
NY, USA, 2012. ACM.

[20] S. Dahlskog and J. Togelius. Patterns as Objectives
for Level Generation. In Proceedings of the Second
Workshop on Design Patterns in Games, May 2013.

[21] S. Dahlskog and J. Togelius. A Multi-level Level
Generator. In Proceedings of the 2014 IEEE
Conference on Computational Intelligence and Games,
pages 389–396. IEEE, August 2014.

[22] J. Dormans. Adventures in Level Design: Generating
Missions and Spaces for Action Adventure Games. In
Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, pages 1:1–1:8, New
York, NY, USA, 2010. ACM.

[23] J. Dormans and S. Leijnen. Combinatorial and
exploratory creativity in procedural content
generation. In Proceedings of the 2013 Workshop on
Procedural Content Generation in Games, 2013.

[24] J. Fenlason, K. Woodland, M. Thome, J. Payne,
A. Brouwer, and D. Kneller. Hack. [Digital game],
1982-1985.

[25] L. Ferreira and C. Toledo. A search-based approach
for generating angry birds levels. In Proceedings of the
9th IEEE International Conference on Computational
Intelligence in Games, 2014.

[26] Firaxis Games. XCOM: Enemy Unknown. [Digital
game], 2012.

[27] Game Freak. Pokémon Red/Blue Version. [Digital
game], 1996.

[28] R. Garriott. Ultima. [Digital game], 1981.

[29] R. Garriott. Ultima II: The Revenge of the
Enchantress. [Digital game], 1982.

[30] Gary Gygax. Dungeon Masters Guide (sic!).
[Role-playing game], 1979.

[31] Gary Gygax and Dave Arneson. Dungeons & Dragons.
[Role-playing game], 1974.

[32] Gary Gygax and Dave Arneson and Frank Mentzer.
Dungeons & Dragons Set 1: Basic Rules. [Role-playing
game], 1983.

[33] K. Hartsook, A. Zook, S. Das, and M. Riedl. Toward
supporting stories with procedurally generated game
worlds. In Computational Intelligence and Games
(CIG), 2011 IEEE Conference on, pages 297–304, Aug
2011.

[34] K. Hullett and J. Whitehead. Design Patterns in FPS
Levels. In FDG ’10: Proceedings of the Fifth
International Conference on the Foundations of
Digital Games, pages 78–85, New York, NY, USA,
2010. ACM.

[35] R. Hunicke, M. Leblanc, and R. Zubek. Mda: A
formal approach to game design and game research. In
In Proceedings of the Challenges in Games AI
Workshop, Nineteenth National Conference of
Artificial Intelligence, pages 1–5. Press, 2004.

[36] Infocom. Zork 1. [Digital game], 1980.

[37] Interplay Productions. Tales of the Unknown, Volume
I: The Bard’s Tale. [Digital game], 1985.

[38] L. Johnson, G. N. Yannakakis, and J. Togelius.
Cellular automata for real-time generation of infinite
cave levels. In Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, pages
10:1–10:4, New York, NY, USA, 2010. ACM.

[39] J. Jones. Design Methods. Architecture Series. Wiley,
1992.

[40] R. A. Koeneke and J. W. Todd. Moria. [Digital game],
1994.

[41] B. Kreimeier. The case for game design patterns. 2002.

[42] D. Lawrence. Telengard. [Digital game], 1982.



[43] P. Lebling, M. Blank, and T. Anderson. Special
Feature Zork: A Computerized Fantasy Simulation
Game. Computer, 12(4):51–59, April 1979.

[44] S. Lundgren and S. Björk. Neither playing nor
gaming: pottering in games. In M. S. El-Nasr,
M. Consalvo, and S. K. Feiner, editors, FDG, pages
113–120. ACM, 2012.

[45] C. McGuinness and D. Ashlock. Decomposing the
level generation problem with tiles. In IEEE Congress
on Evolutionary Computation, pages 849–856. IEEE,
2011.

[46] Mythos Games. UFO: Enemy Unknown (marketed as
X-COM: UFO Defense in NA). [Digital game], 1994.

[47] Nintendo. Super Mario Bros. [Digital game], 1985.

[48] Nintendo EAD. The Legend of Zelda: A Link to the
Past. [Digital game], 1991.

[49] Nintendo R&D4. The Legend of Zelda. [Digital game],
1986.

[50] M. Nitsche. Video Game Spaces: Image, Play, and
Structure in 3D Worlds. Game studies. MIT Press,
Cambridge, MA, U.S.A., 2009.

[51] A. Pantaleev. In search of patterns: Disrupting rpg
classes through procedural content generation. In
Proceedings of the 2012 Workshop on Procedural
Content Generation in Games, pages 57–61, May
2012.

[52] Richard Garriott. Akalabeth: World of Doom. [Digital
game], 1979.

[53] Scorpia. Scorpia’s Role-Playing Game Survey.
Computer Gaming World, 87:16–27, 107–109, 1991.

[54] N. Shaker, J. Togelius, and M. J. Nelson. Procedural
Content Generation in Games: A Textbook and an
Overview of Current Research. Springer, 2014.

[55] A. M. Smith and M. Mateas. Answer Set
Programming for Procedural Content Generation: A
Design Space Approach. IEEE Trans. Comput.
Intellig. and AI in Games, 3(3):187–200, 2011.

[56] G. Smith, R. Anderson, B. Kopleck, Z. Lindblad,
L. Scott, A. Wardell, J. Whitehead, and M. Mateas.
Situating quests: Design patterns for quest and level
design in role-playing games. In M. Si, D. Thue,
E. André, J. C. Lester, J. Tanenbaum, and
V. Zammitto, editors, ICIDS, volume 7069 of LNCS,
pages 326–329, Berlin / Heidelberg, 2011. Springer.

[57] Square. Final fantasy. [Digital game], 1987.

[58] The NetHack DevTeam. NetHack. [Digital game],
1987.

[59] M. Toy, G. Wichman, K. Arnold, and J. Lane. Rogue.
[Digital game], 1980.

[60] V. Valtchanov and J. A. Brown. Evolving Dungeon
Crawler Levels with Relative Placement. In
Proceedings of the Fifth International C* Conference
on Computer Science and Software Engineering,
C3S2E ’12, pages 27–35, New York, NY, USA, 2012.
ACM.

[61] R. van der Linden, R. Lopes, and R. Bidarra.
Procedural generation of dungeons. Computational
Intelligence and AI in Games, IEEE Transactions on,
6(1):78–89, March 2014.

[62] J. P. Zagal, M. Mateas, C. Fernández-vara,
B. Hochhalter, and N. Lichti. Towards an ontological

language for game analysis. In in Proceedings of
International DiGRA Conference, pages 3–14, 2005.


