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Abstract. In this paper we present improvements to our Bayesian approach for
describing the position distribution of the endocardium incardiac ultrasound im-
age sequences. The problem is represented as a latent variable model, which rep-
resents the inside and outside of the endocardium, for whichthe posterior density
is estimated. We start our construction by assuming a three-component Rayleigh
mixture model: for blood, echocardiographic artifacts, and tissue. The Rayleigh
distribution has been previously shown to be a suitable model for blood and tissue
in cardiac ultrasound images. From the mixture model parameters we build a la-
tent variable model, with two realizations: tissue and endocardium. The model is
refined by incorporating priors for spatial and temporal smoothness, in the form
of total variation, connectivity, preferred shapes and position, by using the princi-
pal components and location distribution of manually segmented training shapes.
The posterior density is sampled by a Gibbs method to estimate the expected la-
tent variable image which we call the Bayesian Probability Map, since it describes
the probability of pixels being classified as either heart tissue or within the en-
docardium. By sampling the translation distribution of thelatent variables, we
improve the convergence rate of the algorithm. Our experiments show promis-
ing results indicating the usefulness of the Bayesian Probability Maps for the
clinician since, instead of producing a single segmenting curve, it highlights the
uncertain areas and suggests possible segmentations.

1 Introduction

Echocardiography is more accessible, mobile and inexpensive compared to other imag-
ing techniques and has become a widely used diagnostic method in cardiology in recent
years. Unfortunately ultrasound images struggle with inherent problems which in large
part stem from noise, and is often referred to asspeckle contamination. Speckle is the
result of interference between echoes, which are produced when the ultrasound beam
is reflected from tissue, and has the properties of a random field, see [1, 2]. The use
of the Rayleigh distribution in modeling speckle in ultrasonic B-scan images is well-
established through early works, such as [3, 1], and more recently in [4].

There is much previous work done in the field of segmentation of cardiac ultrasound
images, of which an excellent overview is given in [5]. Here we will only mention those
works which, like our algorithm, treat segmentation of blood and tissue as a pixel-
classification or region-based problem. Our model makes a dependency assumption
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of neighboring pixels via total variation. A similar approach is employed in [6–10],
where Markov random field (MRF) regularization is used. Likeour model, in [7, 9–11] a
Bayesian framework is used, although the construction of the posterior density function
is different. Our approach uses priors on location and shape; of the forementioned, only
one work [9] uses a shape prior. Also in [9] probabilistic pixel class prediction is used,
which is reminiscent of the proposed Bayesian Probability Maps (BPM).

In this paper, we present improvements to our method [12] fordetermining the po-
sition of the endocardium in ultrasound sequences. Information about position may be
used for determining ejection fraction (by comparing systolic and diastolic volume)
and assessment of regional wall abnormalities of the heart;measures used in diagno-
sis of ischaemic heart disease. The problem is represented as a latent variable model,
which represents the inside and outside of the endocardium.The method uses priors for
spatial and temporal smoothness, in the form of total variation, connectivity, preferred
shapes and location, by using the principal components and location distribution of
manually segmented training shapes. The main steps of the method are: 1) We assume
a three-component Rayleigh mixture model for the pixel intensities (of blood, echocar-
diographic artifacts, and tissue) and estimate the parameters by expectation maximiza-
tion. 2) A latent variable model with two realizations, tissue and endocardium, is built
using the estimated mixture model parameters. The posterior distribution of the latent
variables is then sampled. 3) The mean of the posterior givesus the Bayesian probabil-
ity map, which describes the position distribution of the endocardium. Instead of giving
a single segmenting curve, the certainty of which may vary along the curve, our method
provides a more versatile measure.

Our method shares some analogy with other region-based methods, but our ap-
proach of describing the position of the endocardium as the expected latent variable im-
age and incorporating priors on location, connectivity, shape and smoothness in space
and time, is in its construction novel to our knowledge.

The improvement of our previous model consists of: 1) the useof a three-component
mixture model, improving the sensitivity of the algorithm in distinguishing between tis-
sue and blood. 2) A connectivity prior ensuring that samplesare spatially simply con-
nected. 3) An atrium prior, which prevents blood in the atrium being classified as within
the endocardium. 4) Sampling translation distribution, which improves the convergence
of the algorithm.

2 Model

Our goal is to determine the position of the endocardium in anultrasound sequence.
To accomplish this we represent the endocardium by the latent variable model with
values one and zero for the inside and outside, respectivelyand estimate the posterior
distribution of the latent variable model

P (u|z, θ) ∝ p(z|u, θ)P (u|θ) , (1)

whereu is the vector of latent variables,z represent image intensities stacked into a
single vector andθ are parameters. The Rayleigh distribution has been reported to be
an appropriate for modeling blood and tissue in cardiac ultrasound images, see [3, 1, 4].
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Therefore to construct the likelihoodp(z|u, θ), we assume a Rayleigh mixture model
for pixels intensities in the ultrasound images, as described in Section 2.1. In Section
2.2, we construct the prior distributionP (u|θ) by using the prior knowledge such as
temporal and spatial smoothness, connectivity, shape and location.

2.1 Likelihood

By empirical observation we model the ultrasound data as a three-component mixture
model: one for the blood intensities, one for echocardiographic artifacts, and finally one
for the tissue. By artifacts we refer to areas with tissue-like intensity caused by cordae,
papillary muscles, ribs or local increase in signal strength. Denoting the intensity value
of pixel k in an ultrasound image byzk, we assume that

p(zk|θ) = α1prayl(zk|σ1) + α2prayl(zk|σ2) + α3prayl(zk|σ3) , (2)

whereθ = {αi, σi; i = 1, 2, 3} are the mixture model parameters andprayl(z|σ) =
z
σ

exp(− z2

2σ
), σ > 0 is the Rayleigh probability density function. In our previous work

we employed two-component mixture model, but we have found that a three-component
model better discriminates between tissue and blood, by adding a category for echocar-
diographic artifacts. Pixels are assumed to be independentin the mixture model. The
likelihood is then defined as

p(z|w, θ) =
∏

j

∏

k

P (Wj = k|zj , σk)δ(wj−k), k = 1, 2, 3 (3)

whereWj andwj is the random latent variable and its realization, respectively, corre-
sponding tozj , andδ denotes the Kronecker delta function.wj = 1 if xj is in the blood
pool,wj = 2 if xj is in an echocardiographic artefact,wj = 3 if xj is in the cardiac
tissue, andP (Wj ∈ i|zj , θ) = αiprayl(zj |σi)/

∑3
k=1 αkprayl(zj|σk), i = 1, 2, 3.

We use the parametersθ to build a latent variable model, with only two realizations:
tissue (0) and endocardium (1). The likelihood of this model is defined as

p(z|u, θ) =
∏

j

P (Uj ∈ endocardium|zj , σ)uj P (Uj ∈ tissue|zj , σ)1−uj , (4)

σ = {σ1, σ2, σ3}

whereUj anduj are the random latent variable and its realization, respectively, corre-
sponding tozj andP (Uj ∈ tissue|zj, θ) = α1prayl(zj |σ1)/

∑3
i=1 αiprayl(zj |σi) and

P (Uj ∈ endocardium|θ) = 1 − P (Uj ∈ backgr|zj , θ).

2.2 Prior

Our prior model

P (u|θ) =PB(u|θ)PTV|B(u|θ)Pshape|B,TV(u|θ)Patrium|B,TV,shape(u|θ)× (5)

Pcon|B,TV,shape,atrium(u|θ)Plocation|B,TV,shape,atrium,con(u|θ)
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Fig. 1. The symbolu represents them latent variable imagesIu stacked into a single vector. Each
Iu corresponds to an image in the ultrasound sequence of lengthm.

consists of six components, where each characterizes different kinds of properties pre-
ferred. The Bernoulli componentPB is the discrete latent variable distribution following
from the Rayleigh mixture model. The total variationPTV|B enforces spatial and tem-
poral smoothness for latent variable images, and possible shape variations around the
mean shape are characterized by trained eigenshapes of manually segmented images
throughPshape|B,TV. The sequence of ultrasound images is divided into subsequences,
to take the temporal variations of the endocardium into account, and so for each part of
the ultrasound sequence a corresponding set of eigenshapesand mean is used.

The atrium contains blood which should not be classified as being within the endo-
cardium. The atrium priorPatrium|B,TV,shape reduces the likelihood exponentially, of
a pixel being classified as being within the endocardium, with distance from the hori-
zontal position of the ventricle to the bottom of the ultrasound image. Although some
blood may still be misclassified, this prior will prevent large misclassifications.

The connectivity priorPcon|B,TV,shape,atrium enforces that all samplesu are spa-
tially simply connected.

The location priorPlocation|B,TV,shape,atrium,con is constructed from the mean of
the unregistered binary training shapes. The location prior describes the experimental
probability value for each pixel location being either inside or outside of the endo-
cardium, thus allowing only similar latent variable valuesas observed in the training
data.

The Bernoulli prior is defined as

PB(u|θ) ∝
∏

j

αuj (1 − α)1−uj (6)

and is thus a prior on the proportion of zeros and ones inu andj ∈ {1, ..., N}, where
N is the total number of latent variables inu.

Let Iu(x; n) be a latent variable image, wherex andn are its spatial and temporal
coordinates, respectively (see Figure 1). The total variation prior is then given by

PTV|B(u|θ) ∝ exp{−λTV||Iu(x; n) ∗ h||L1} ,

whereh is a three dimensional Laplacian kernel and∗ denotes convolution.
Let Iu,r(x; n) be the transitionally registered latent variable image, corresponding

to Iu(x; n), where the center of mass has been shifted to the origin;u
n
r andū

n
r are the
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corresponding latent variable vectors. The shape prior is defined as

Pshape|B,TV(u|θ) ∝
∏

n

exp{−λshape(u
n
r − ū

n
r )T (Cn + λ0I)

−1(un
r − ū

n
r )} , (7)

whereCn represents the truncated covariance of the training shapes, whose center of
mass has been shifted to the origin, andλ0I is the Tikhonov regularizer [13].

The atrium prior is defined as

Patrium|B,TV,shape(u|θ) ∝
∏

x

∏

n

a(x)Ir
utrain

(x; n) , (8)

where

a(x) =

{

1 if x2 > xa

1 − exp{ x2−xa

max
x2

(x2−xa)} , otherwise (9)

wherexa = max
n

{

argmin
x2

{Ir
utrain

(x; n) > 0}
}

, x = (x1, x2). In every training image

Ir
utrain

there is a leastx2-coordinatexl s.tIr
utrain

((x1, xl)) > 0; xa is the largest out of
all xl. This gives an approximate location of the ventricle, wherethe atrium starts.

The connectivity prior is defined as

Pcon|B,TV,shape,atrium(u|θ) ∝

{

1 if u ∈ N
0 , otherwise

(10)

whereN = {u : u spatially simply connected}.
The location prior is defined as

Plocation|B,TV,shape,atrium,con(u|θ) ∝ (11)
{

1 if 1
∑

j
uj

∑

n

∑

x h
(

g ∗ Īutrain (x; n)
)

Iu(x; n) = 1

0 otherwise

whereĪutrain = 1
K

∑

k Ik
utrain

is the mean training image andK is the number of train-
ing images.g is a Gaussian kernel andh is the step function s.t.h(t) = 1 for t > 0,
otherwiseh(t) = 0. This component has the effect that when sampling individual la-
tent variables outside of the (smoothed) mean shape, the result of sampling will be that
the latent variable is set to zero. Inside the (unregistered) mean shape the sampling is
unaffected.

Three parameters control the influence of the priors:λTV, λshape andλ0. By in-
creasingλTV we can regularize our sampling, while increasingλshape makes the in-
fluence of the shape prior larger. Finallyλ0 increases the influence of the mean shape
in the formation of the shape prior; this is crucial when segmenting very noisy images,
that do not respond well to the subtle control of the a shape prior with smallλ0.

3 Algorithm

Our algorithm for generating Bayesian Probability Maps canbe divided into three parts.
First the mixture model parameters are estimated by the EM algorithm from our ultra-
sound data; these parameters are used to compute the class posterior possibilities for
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Fig. 2. Summary of the proposed algorithm to construct the Bayesianprobability map.

each latent variable after seeing the corresponding image values — these probabilities
are used as an input in following step in constructing the likelihood function that is
further transformed to the posterior probabilities in the second step. The posterior is
then sampled by Gibbs sampling and the samples are used to compute the Bayesian
probability map. The algorithm is summarized in Fig. 2.

3.1 Estimation of mixture model parameters

The complete data likelihood is represented according to the latent variable model as

p(z,w|θ) =
∏

j

∏

i

prayl(zj |σi)
δ(wj−i) , (12)

wherez are the pixel intensity values andw = (w1, ..., wN ) are interpreted as missing
data. The mixture parametersθ = {αi, σi; i = 1, .., 3} are estimated by Expectation
Maximization (EM) [14]. That is, on the E-step, we build the expected complete data
loglikelihood, conditioned on the measured data and the previous parameter estimates,
or

χ(θ, θ̂(n−1)) = E
w|z,θ̂(n−1){log p(z,w|θ))}

=

N
∑

j=1

3
∑

k=1

P (Wj = k|zj , θ̂
(n−1)) log prayl(zj |θ) . (13)

On the M-step, the expected complete data loglikelihood is maximized to obtain an
update for the parameters

θ̂(n) = argmax
θ

χ(θ, θ̂(n−1)) , (14)

and the steps are iterated until convergence.

3.2 Sampling of the Posterior

To improve convergence, the sampling of the posterior (1) was performed by alternating
between conventional Gibbs sampling [15, 16] and sampling of latent variable image
translations. On the Gibbs step, we draw the elements of the sample latent variable
vectoru from the conditional distribution

P (uj |u
(i)
1 , . . . , u

(i)
j−1, u

(i−1)
j+1 , . . . , u

(i−1)
N )

=
{

P (uj = k|u
(i)
1 , . . . , u

(i)
j−1, u

(i−1)
j+1 , . . . , u

(i−1)
N )

}1

k=0
, j = 1, 2, . . . , N .

(15)
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Then, to obtain sample vectoru(i), we sample the distribution of translations which
spatially move the latent variable imageIu. The details of the translation sampling step
are as follows.

We want to sample the conditional translation distribution

P (t|u, z, θ) ≡ P (u′|u, z, θ) , (16)

where the latent variable vectoru
′ is obtained fromu by spatially translating the latent

variable imageIu by t. Now we may write,

P (t|u, z, θ) ∝





N
∏

j=1

prayl(zj |σ1)
u′

j prayl(zj |σ2)
1−u′

j



 p(u′|θ)

∝
N
∏

j=1

(prayl(zj |σ1)v1,j)
u′

j (prayl(zj |σ2)v2,j)
1−u′

j ,

(17)

where we have used the fact that, apart from the location prior, the conditional trans-
lation distribution is independent of the priors; and the location prior is encoded in the
mask vectorsv1 = ⌈v⌉ andv2 = 1 − ⌊v⌋, wherev is the vector corresponding to the
matrixg ∗ Īutrain , cf. (11). It follows that

log P (t|u, z, θ) =
N

∑

j=1

u′
j log (prayl(zj |σ1)v1,j) + (1 − u′

j) log (prayl(zj |σ2)v2,j) + C ,

(18)

whereC is a constant that does not depend on the translation. The sums above represent
correlations between the translated latent variable imageand the masked log probabil-
ity densities. Hence, the logarithms of the conditional translation probabilities can be
computed by the correlation theorem, after which we are ableto draw the translation
sample and finally obtain the sampleu

(i) = u
′.

After iteration the center of mass of each latent variable image is calculated, which
determines the area of influence of the shape prior.

3.3 Sample Mean

To characterize the posterior distribution, we compute estimate conditional mean of the
latent variable vector over the posterior

E{u|z, θ} ≈
1

M

∑

i

u
(i) =

(

P̂ (Uk ∈ obj)
)N

k=1
≡ ûCM (19)

by the latent variable sample vectorsu
(i). By the strong law of large numberŝuCM →

E{u|z, θ} whenn → ∞. The corresponding imageIûCM
represents the Bayesian prob-

ability map.
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4 Experiments

4.1 Material

The ultrasound data used in this paper consists of cardiac cycles of two-chamber (2C)
apical long-axis views of the heart. The sequences were obtained using the echocar-
diogram machines Philips Sonos 7500, Philips iE33 or GE Vivid 7, from consecutive
adult patients referred to the echocardiography laboratory at Malmö University hospi-
tal, Sweden which has a primary catchment area of 250,000 inhabitants. Expert outlines
of the endocardium in the sequences have been provided by thesame hospital.

4.2 Initialization

As an initial estimate of mixture model parameters we setα(0) to the proportion of
object pixels in the training images, andσ1 and σ2 are set to maximum likelihood
estimateσ̂ = ( 1

2Q

∑Q

i=1 x2
i )

1
2 of object and background pixels in the training data,

whereQ is the number of pixels in the training set. The Gibbs sampling algorithm is
seeded by a sample obtained by Bayesian classification of themean of the annotated
images for each category of the heart cycle. Prior parameters λTV, λshape, λ0 are set
manually.

4.3 Evaluation

We divide our data into two sets: training set and validationset. The training set consists
of 20 cardiac cycles. The training set is further divided into sets, corresponding to parts
of the cardiac cycle. The validation set consists of 4 different cardiac cycles.

As evaluation measure the expected misclassificationEmc of a pixel, w.r.t the expert
outline, is used. LetItrue(x; n) be ground truth images corresponding to the dataz.
Then the expected misclassification of a pixel in the examined sequence is given by

Emc =
1

N

∑

n

∑

x

(

1 − Itrue(x; n)
)

P
(

Iu(x; n) = 0
)

+ Itrue(x; n)P
(

Iu(x; n) = 1
)

.

(20)

This measure is needed since it is impossible to present the entire sequence in im-
ages. A lowEmc guarantees that the Bayesian Probability Map correctly describes the
position of the endocardium in the entire sequence, not justfor a few selected images.

4.4 Results

Figure 4 and 5 contain Bayesian Probability Maps (BPM) formed from 150-200 sam-
ples; the approx. number samples needed to reach a stationary distribution. Running
time for sampling is approx. 3 hours for the entire ultrasound sequence on a Intel Xeon
2.33 GHz, 9 Gb RAM server. The probability map spans colors from red to blue with
degree of probability,of area being within the endocardium. Hence, red indicates the
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Table 1. Parameters andEmc for Validation Sequences

Validation SequenceλTV λshape λ0 Emc

A 0.75 125 100 0.0335
B 1.5 60 100 0.0367
C 4 400 800 0.0507
D 5 500 1000 0.0569

highest probability. Table 1 contains the parameter settings and theEmc for the valida-
tion sequences. From each sequence four frames are displayed, two at systole and two
at diastole. Sequence A and B have quite modest parameter values, as the underlying
estimate of tissue and blood, is quite satisfactory and doesnot need much intervention
in the form of priors. Sequence C and D required largeλ0, due to artifacts in the cham-
ber (in the case of D due to rib of patient). Overall these results are superior to those we
have previously published.

4.5 Comparison with Graph Cut Method

We compare our results with a Graph Cut method as described in[17–19]. In Figure
3 we observe that the Graph Cut method fails to identify the location as clearly as the
proposed method for sequence A. For validation sequences B,C and D no results were
obtained since a singular covariance matrix was obtained. This may be attributed to the
very noisy nature of these sequences. This comparison is limited and given to show
the differences between the proposed method and pure Graph Cut algorithms, as there
are some fundamental similarities such as pixel dependencies; similar to the methods
described in [6, 7, 9–11], the Graph Cut method uses MRF for this. However, more
complex methods share many similarities with our method, e.g. as described in [7],
which we plan include in future comparative study.

5 Conclusion and future work

We have presented improvements to our approach [12] to cardiac ultrasound segmenta-
tion, which consists of modeling the endocardium by latent variables. The latent vari-

(A1) (A2) (A3) (A4)

Fig. 3. (Color online) Graph Cut (red) applied to Validation sequence A with expert outline
(white).
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(A1) (A2)

(A3) (A4)

(B1) (B2)

(B3) (B4)

Fig. 4. (Color online) Validation sequences A (43 frames) and B (40 frames). BPM with overlaid
expert outline (white). Systole (A1-2,B1-2) and Diastole (A3-4,B3-4).
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(C1) (C2)

(C3) (C4)

(D1) (D2)

(D3) (D4)

Fig. 5. (Color online) Validation sequences C (21 frames) and D (35 frames). BPM with overlaid
expert outline (white). Systole (C1-2,D1-2) and Diastole (C3-4,D3-4).
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able distribution is then sampled which yields Bayesian Probability Map, which de-
scribes the location of the endocardium. The improvements consist of a three-component
mixture model, connectivity, an atrium prior and sampling translation distribution.

We plan to introduce a method of estimating the prior parameters, and by this refin-
ing our results. We will expand our comparative evaluation with graph-based methods
and those akin to the approach proposed by [7].
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