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Abstract. In this paper we present improvements to our Bayesian apiprize
describing the position distribution of the endocardiunsandiac ultrasound im-
age sequences. The problem is represented as a latenieaniadbel, which rep-
resents the inside and outside of the endocardium, for whielposterior density
is estimated. We start our construction by assuming a ttoegonent Rayleigh
mixture model: for blood, echocardiographic artifacts] éissue. The Rayleigh
distribution has been previously shown to be a suitable hfodblood and tissue
in cardiac ultrasound images. From the mixture model patrermeve build a la-
tent variable model, with two realizations: tissue and eaddium. The model is
refined by incorporating priors for spatial and temporal sthoess, in the form
of total variation, connectivity, preferred shapes andtms by using the princi-
pal components and location distribution of manually segestraining shapes.
The posterior density is sampled by a Gibbs method to estithatexpected la-
tent variable image which we call the Bayesian Probabiligplysince it describes
the probability of pixels being classified as either heasue or within the en-
docardium. By sampling the translation distribution of thtent variables, we
improve the convergence rate of the algorithm. Our expertsnshow promis-
ing results indicating the usefulness of the Bayesian RitibaMaps for the
clinician since, instead of producing a single segmentinye it highlights the
uncertain areas and suggests possible segmentations.

1 Introduction

Echocardiography is more accessible, mobile and inexpensimpared to other imag-
ing techniques and has become a widely used diagnostic thetleardiology in recent
years. Unfortunately ultrasound images struggle with iaheproblems which in large
part stem from noise, and is often referred togaexckle contamination. Speckle is the
result of interference between echoes, which are produtehhe ultrasound beam
is reflected from tissue, and has the properties of a randdd) fiee [1, 2]. The use
of the Rayleigh distribution in modeling speckle in ultragkpB-scan images is well-
established through early works, such as [3, 1], and moentcin [4].

There is much previous work done in the field of segmentaticawiac ultrasound
images, of which an excellent overview is given in [5]. Herewill only mention those
works which, like our algorithm, treat segmentation of licend tissue as a pixel-
classification or region-based problem. Our model makespami#ency assumption
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of neighboring pixels via total variation. A similar appobais employed in [6-10],
where Markov random field (MRF) regularization is used. Loke model, in [7,9-11] a
Bayesian framework is used, although the constructioneptisterior density function
is different. Our approach uses priors on location and stafjike forementioned, only
one work [9] uses a shape prior. Also in [9] probabilisticgliglass prediction is used,
which is reminiscent of the proposed Bayesian Probabiliaps(BPM).

In this paper, we present improvements to our method [12§iébermining the po-
sition of the endocardium in ultrasound sequences. Infaomabout position may be
used for determining ejection fraction (by comparing slstand diastolic volume)
and assessment of regional wall abnormalities of the hewésures used in diagno-
sis of ischaemic heart disease. The problem is represegatadatent variable model,
which represents the inside and outside of the endocardibexmethod uses priors for
spatial and temporal smoothness, in the form of total vianatonnectivity, preferred
shapes and location, by using the principal components acatibn distribution of
manually segmented training shapes. The main steps of tiiedhare: 1) We assume
a three-component Rayleigh mixture model for the pixelnisites (of blood, echocar-
diographic artifacts, and tissue) and estimate the pasmsby expectation maximiza-
tion. 2) A latent variable model with two realizations, tissand endocardium, is built
using the estimated mixture model parameters. The postdistibution of the latent
variables is then sampled. 3) The mean of the posterior gisd¢ise Bayesian probabil-
ity map, which describes the position distribution of the@cardium. Instead of giving
a single segmenting curve, the certainty of which may vaspgthe curve, our method
provides a more versatile measure.

Our method shares some analogy with other region-basedodsthut our ap-
proach of describing the position of the endocardium asxpeated latent variable im-
age and incorporating priors on location, connectivitgmhand smoothness in space
and time, is in its construction novel to our knowledge.

The improvement of our previous model consists of: 1) theofisghree-component
mixture model, improving the sensitivity of the algorithmdistinguishing between tis-
sue and blood. 2) A connectivity prior ensuring that samplesspatially simply con-
nected. 3) An atrium prior, which prevents blood in the atribeing classified as within
the endocardium. 4) Sampling translation distributionichtimproves the convergence
of the algorithm.

2 Modd

Our goal is to determine the position of the endocardium iulérasound sequence.
To accomplish this we represent the endocardium by thetlatmmble model with
values one and zero for the inside and outside, respectwralyestimate the posterior
distribution of the latent variable model

P(ulz,0) o p(z[u,0)P(ulf), 1)

whereu is the vector of latent variables,represent image intensities stacked into a
single vector and are parameters. The Rayleigh distribution has been raptotbe
an appropriate for modeling blood and tissue in cardiaasttund images, see [3, 1, 4].
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Therefore to construct the likelihogdz|u, 0), we assume a Rayleigh mixture model
for pixels intensities in the ultrasound images, as deedrib Section 2.1. In Section
2.2, we construct the prior distributiaR(u|#) by using the prior knowledge such as
temporal and spatial smoothness, connectivity, shapecaagidn.

2.1 Likelihood

By empirical observation we model the ultrasound data asesethomponent mixture

model: one for the blood intensities, one for echocardiplgi@artifacts, and finally one

for the tissue. By artifacts we refer to areas with tissie-intensity caused by cordae,
papillary muscles, ribs or local increase in signal strenBenoting the intensity value

of pixel k£ in an ultrasound image by, we assume that

p(2k|9) — Clerayl(zk|0'l) + a2prayl(zk|02) + a3prayl(zk|03) ) (2)

wheref = {a;,0,;7 = 1,2, 3} are the mixture model parameters apgi(z|o) =
2

Z exp(—3-), o > 0is the Rayleigh probability density function. In our prexsowork

we employed two-component mixture model, but we have fohatid three-component
model better discriminates between tissue and blood, bing@dcategory for echocar-
diographic artifacts. Pixels are assumed to be independehé mixture model. The
likelihood is then defined as

p(zlw,0) = [[ [ PW; = klzj, 00)° 9, k = 1,2,3 3)
ik

whereW; andw, is the random latent variable and its realization, respelgti corre-
sponding toz;, andd denotes the Kronecker delta functiam. = 1 if x; is in the blood
pool,w; = 2if x; is in an echocardiographic artefaat; = 3 if x; is in the cardiac
tissue, andP(W; € i|z;,0) = a;prayi(25l0i)/ Zi:l QkPrayi(zj]0k),1 = 1,2, 3.

We use the parametetgo build a latent variable model, with only two realizations
tissue () and endocardiumlj. The likelihood of this model is defined as

p(z|u, ) = HP(Uj € endocardium|z;, 0)" P(U; € tissue|zj, o) =", (4)
J

o= {01702703}
whereU; andu; are the random latent variable and its realization, resfytcorre-
sponding toz; and P(U; € tissue|zj,0) = a1prayi(2j|01)/ S0, Qibrayi(2;0s) and
P(U; € endocardium|f) = 1 — P(U; € backgtz;, 8).
2.2 Prior
Our prior model

P(u|9) :PB (u|9)PTV|B(u|9)PShape|B,TV(u|Q)Patrium|B,TV,shape(u|9)X (5)

PCon|B,TV,shape,atrium (u|0)ﬂocation\B,TV,shape,atrium,Con(u| 9)
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pog-pag i)

Fig. 1. The symbolu represents the: latent variable images, stacked into a single vector. Each
I, corresponds to an image in the ultrasound sequence of lemgth

consists of six components, where each characterizesatiffkinds of properties pre-
ferred. The Bernoullicomponeft; is the discrete latent variable distribution following
from the Rayleigh mixture model. The total variatiéf; g enforces spatial and tem-
poral smoothness for latent variable images, and posdialpesvariations around the
mean shape are characterized by trained eigenshapes oéllyasegmented images
throughPyp,.pc8,7v- The sequence of ultrasound images is divided into subsegse
to take the temporal variations of the endocardium into ant@and so for each part of
the ultrasound sequence a corresponding set of eigenshiagp@sean is used.

The atrium contains blood which should not be classified agbeithin the endo-
cardium. The atrium prioP,,ium(B,Tv shape f€duces the likelihood exponentially, of
a pixel being classified as being within the endocardium wistance from the hori-
zontal position of the ventricle to the bottom of the ultnasd image. Although some
blood may still be misclassified, this prior will preventdarmisclassifications.

The connectivity priorP.q, B, v shape,atrium €Nforces that all samplesare spa-
tially simply connected.

The location priorPgcation|B, TV, shape,atrium,con 1S CONStructed from the mean of
the unregistered binary training shapes. The locatiorr pigscribes the experimental
probability value for each pixel location being either a@wesior outside of the endo-
cardium, thus allowing only similar latent variable valesobserved in the training
data.

The Bernoulli prior is defined as

Pp(ulf) o [Ja" (1 — )™ (6)
J

and is thus a prior on the proportion of zeros and onasamd; € {1, ..., N}, where
N is the total number of latent variablesin

Let I,(x;n) be a latent variable image, whexeandn are its spatial and temporal
coordinates, respectively (see Figure 1). The total viangirior is then given by

Pryis(ulf) oc exp{—=Arv||Lu(x;n) * hl|L, } ,

whereh is a three dimensional Laplacian kernel andenotes convolution.
Let I, »(x;n) be the transitionally registered latent variable imagerezsponding
to I, (x;n), where the center of mass has been shifted to the onigfirgnda” are the
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corresponding latent variable vectors. The shape priczfined as

PshaPCIB,TV(u|9) X H eXp{_/\shape(u? - ﬁ-?)T(Cn + )‘OI)_I(U-? - ﬁ?)} , (N
whereC,, represents the truncated covariance of the training shapesse center of
mass has been shifted to the origin, aad is the Tikhonov regularizer [13].

The atrium prior is defined as

Patrium|B,TV,shapc(u|9) o8 H H a(x)IStrain (X; n) ) (8)
where
1 if 29 > 7,
a(x) =9 1- exp{mm-ta—1 , otherwise 9
T2

wherez, = max{argmin{I} (x;n) > 0}}, x = (z1,z2). In every training image
n o

Ij, . thereis aleasty-coordinater; s.tI); . ((z1,;)) > 0; z, is the largest out of
all z;. This gives an approximate location of the ventricle, witheeatrium starts.

The connectivity prior is defined as

lifueN
Pcon\B,TV,shapc,atrium(u|9) X {O , otherwise (10)
whereN = {u : u spatially simply connected}.
The location prior is defined as
Plocation|B,TV,shape,atrium,Con(u|9) 08 (11)
Lif 5 LS S k(9% T, (x31)) Tu(x3m) = 1
Ui
0 otherwise

wherel,,. .. = % >, IF isthe mean training image arid is the number of train-
ing imagesy is a Gaussian kernel aridis the step function s.ti(t) = 1 for ¢ > 0,
otherwiseh(t) = 0. This component has the effect that when sampling indivithua
tent variables outside of the (smoothed) mean shape, thit oésampling will be that
the latent variable is set to zero. Inside the (unregisjarezhn shape the sampling is
unaffected.

Three parameters control the influence of the pridfsy, Ashape and Ag. By in-
creasing\ty we can regularize our sampling, while increasig.,. makes the in-
fluence of the shape prior larger. Finally increases the influence of the mean shape
in the formation of the shape prior; this is crucial when segtimg very noisy images,
that do not respond well to the subtle control of the a shajoe pith small .

3 Algorithm

Our algorithm for generating Bayesian Probability Mapsioanlivided into three parts.
First the mixture model parameters are estimated by the [orighm from our ultra-
sound data; these parameters are used to compute the ckssgrgossibilities for



6 M. Hansson, S. Brandt, P. Gudmundsson, F. Lindgren

(i)

. 9 u
Mixture . . -
Bayesian Probabilit
Parameter Sampling of the Sample Mean Yy y
Posterior Map

Estimation
Fig. 2. Summary of the proposed algorithm to construct the Baygqsialbability map.

each latent variable after seeing the corresponding imalyes — these probabilities
are used as an input in following step in constructing thelillood function that is

further transformed to the posterior probabilities in teeand step. The posterior is
then sampled by Gibbs sampling and the samples are used foutethe Bayesian
probability map. The algorithm is summarized in Fig. 2.

3.1 Estimation of mixture model parameters

The complete data likelihood is represented accordingeadatent variable model as

p(z,w|l) = HHprayl(zﬂai)‘;(“’j*i) , (12)
joi

wherez are the pixel intensity values avd = (w1, ..., wy) are interpreted as missing
data. The mixture parametefs= {«;,0;;i = 1,..,3} are estimated by Expectation
Maximization (EM) [14]. That is, on the E-step, we build thepected complete data
loglikelihood, conditioned on the measured data and theique parameter estimates,
or

x(0,61)

Eyjz.60-n{logp(z, w|0))}
N 3
j=1k

On the M-step, the expected complete data loglikelihood agimized to obtain an
update for the parameters

6™ = argmax x(0,0"V) | (14)
0

P(W; = k|zj,07 V) log prayi(2510) - (13)
1

and the steps are iterated until convergence.

3.2 Sampling of the Posterior

To improve convergence, the sampling of the posterior (¥)peaformed by alternating
between conventional Gibbs sampling [15,16] and samplirigtent variable image
translations. On the Gibbs step, we draw the elements ofaimple latent variable
vectoru from the conditional distribution

i i i—1 i—1
Pluglut, ..l a0 )
= (Pl = kol D) =12

0

1 .
(15)
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Then, to obtain sample vectar?, we sample the distribution of translations which
spatially move the latent variable imagg The details of the translation sampling step
are as follows.

We want to sample the conditional translation distribution

P(t|u,z,0) = P(v'|u,z,0) , (16)

where the latent variable vectaf is obtained fromu by spatially translating the latent
variable imagd,, by t. Now we may write,

N
P(tJu,2,8) o | [T prayi(zi100)% prayi (25102)* 5 | p(u'|6)
= (17)

o’

N
H Drayl Zg|0'1 U1 ]) J (prayl(zj|0'2)v2,j) I )

where we have used the fact that, apart from the location,ghe conditional trans-

lation distribution is independent of the priors; and thealiion prior is encoded in the
mask vectors; = [v] andvy = 1 — |v], wherew is the vector corresponding to the
matrix g * I, cf. (11). It follows that

train?

N
log P(t[u,2,0) = " u}10g (prayi(j]o1)v1 ) + (1 = ) 10g (prayi(25]02)v2,5) + C
J=1
(18)

whereC'is a constant that does not depend on the translation. Theanove represent
correlations between the translated latent variable inaagkthe masked log probabil-
ity densities. Hence, the logarithms of the conditionahstation probabilities can be
computed by the correlation theorem, after which we are &btiraw the translation
sample and finally obtain the sampl€) = u’.

After iteration the center of mass of each latent variablegeis calculated, which
determines the area of influence of the shape prior.

3.3 Sample Mean

To characterize the posterior distribution, we computigrege conditional mean of the
latent variable vector over the posterior

E{u|z,0} ~ % > u = (P(U, € obj))_, = tew 19

%

by the latent variable sample vectar$). By the strong law of large numbeig; —
E{u|z, 6} whenn — oo. The corresponding imadg,.,, represents the Bayesian prob-
ability map.
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4 Experiments

4.1 Material

The ultrasound data used in this paper consists of cardidexyf two-chamber (2C)
apical long-axis views of the heart. The sequences werdnaltaising the echocar-
diogram machines Philips Sonos 7500, Philips iE33 or GEdV®;ifrom consecutive
adult patients referred to the echocardiography laboyatbMalmo University hospi-
tal, Sweden which has a primary catchment area of 250,0Gbitdnts. Expert outlines
of the endocardium in the sequences have been provided Isathe hospital.

4.2 |nitialization

As an initial estimate of mixture model parameters wesét to the proportion of
object pixels in the training images, and and o, are set to maximum likelihood
estimates = (% Z?Zl xf)% of object and background pixels in the training data,
where( is the number of pixels in the training set. The Gibbs sangpdifgorithm is
seeded by a sample obtained by Bayesian classification ohéfae of the annotated
images for each category of the heart cycle. Prior paramater, Ashape, Ao are set
manually.

4.3 Evaluation

We divide our data into two sets: training set and validasiei The training set consists
of 20 cardiac cycles. The training set is further dividedis¢ts, corresponding to parts
of the cardiac cycle. The validation set consists of 4 défféicardiac cycles.

As evaluation measure the expected misclassificafignof a pixel, w.r.t the expert
outline, is used. Lefy,,.(x;n) be ground truth images corresponding to the data
Then the expected misclassification of a pixel in the exathgeguence is given by

Ene = % Z Z (1 - Itruc(x; n))P(Iu(X, n) = O) + Itruc(X; n)P(Iu(X’ n) - 1) ’

This measure is needed since it is impossible to presentitire sequence in im-
ages. A lowFE,,,. guarantees that the Bayesian Probability Map correctlgritess the
position of the endocardium in the entire sequence, nofgust few selected images.

4.4 Results

Figure 4 and 5 contain Bayesian Probability Maps (BPM) fairfrem 150-200 sam-
ples; the approx. number samples needed to reach a stagtidistibution. Running
time for sampling is approx. 3 hours for the entire ultragbsaguence on a Intel Xeon
2.33 GHz, 9 Gb RAM server. The probability map spans colaymfred to blue with
degree of probability,of area being within the endocardittance, red indicates the
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Table 1. Parameters anfl,,,. for Validation Sequences

Validation SequenceAry | Ashape | Ao Fre
A 0.75| 125 | 100 | 0.0335
B 1.5 60 100 | 0.0367
C 4 400 | 800 | 0.0507
D 5 500 | 1000| 0.0569

highest probability. Table 1 contains the parameter ggttand thev,,. for the valida-
tion sequences. From each sequence four frames are didptayeat systole and two
at diastole. Sequence A and B have quite modest parametersyals the underlying
estimate of tissue and blood, is quite satisfactory and doeseed much intervention
in the form of priors. Sequence C and D required laxgedue to artifacts in the cham-
ber (in the case of D due to rib of patient). Overall theseltesue superior to those we
have previously published.

45 Comparison with Graph Cut Method

We compare our results with a Graph Cut method as describgd#19]. In Figure
3 we observe that the Graph Cut method fails to identify tlvation as clearly as the
proposed method for sequence A. For validation sequenc2samd] D no results were
obtained since a singular covariance matrix was obtaineid.May be attributed to the
very noisy nature of these sequences. This comparison ietinand given to show
the differences between the proposed method and pure Grapdddorithms, as there
are some fundamental similarities such as pixel dependsnsimilar to the methods
described in [6, 7,9-11], the Graph Cut method uses MRF fist thowever, more
complex methods share many similarities with our methogl, & described in [7],
which we plan include in future comparative study.

5 Conclusion and future work

We have presented improvements to our approach [12] toarauifrasound segmenta-
tion, which consists of modeling the endocardium by latemtables. The latent vari-

(A1) (A) (A3)

Fig. 3. (Color online) Graph Cut (red) applied to Validation secqueer\ with expert outline
(white).
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(B3)

Fig. 4. (Color online) Validation sequences A (43 frames) and B (4fnks). BPM with overlaid
expert outline (white). Systole (A1-2,B1-2) and DiastoA&{4,B3-4).
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(D3) (D4)

Fig.5. (Color online) Validation sequences C (21 frames) and D (&és). BPM with overlaid
expert outline (white). Systole (C1-2,D1-2) and Diast@&4,D3-4).
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able distribution is then sampled which yields BayesianbBbdity Map, which de-
scribes the location of the endocardium. The improvementsist of a three-component
mixture model, connectivity, an atrium prior and samplirapslation distribution.

We plan to introduce a method of estimating the prior paranseind by this refin-

ing our results. We will expand our comparative evaluatidgth\graph-based methods
and those akin to the approach proposed by [7].
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