
STEVE DAHLSKOG
PATTERNS AND PROCEDURAL
CONTENT GENERATION IN
DIGITAL GAMES
Automatic Level Generation for Digital Games
Using Game Design Patterns

S
T

U
D

IE
S

 IN
 C

O
M

P
U

T
E

R
 S

C
IE

N
C

E
 N

O
 2

, D
O

C
T

O
R

A
L

 D
IS

S
E

R
TA

T
IO

N

S
T

E
V

E
 D

A
H

L
S

K
O

G

 M
A

L
M

Ö
 U

N
IV

E
R

S
IT

Y
 2

0
1

6
P

A
T

T
E

R
N

S
 A

N
D

 P
R

O
C

E
D

U
R

A
L

 C
O

N
T

E
N

T
 G

E
N

E
R

A
T

IO
N

 IN
 D

IG
ITA

L
 G

A
M

E
S

P A T T E R N S A N D P R O C E D U R A L C O N T E N T G E N E R A T I O N
I N D I G I T A L G A M E S

Studies in Computer Science No 2

© Steve Dahlskog, 2016

ISBN 978-91-7104-684-0 (print)

ISBN 978-91-7104-685-7 (pdf)

Holmbergs, Malmö 2016

STEVE DAHLSKOG
PATTERNS AND PROCEDURAL
CONTENT GENERATION IN
DIGITAL GAMES

Automatic Level Generation for Digital Games Using
Game Design Patterns

Department of Computer Science
Faculty of Technology and Society

Malmö University, 2016

The publication is also electronically available at:
http://dspace.mah.se/handle/2043/20371

Dedicated to my family and to the loving memory of Elfride Åkesson,
Stig Åkesson, Majken Nilsson and Karl-Erik Nilsson.

A B S T R A C T

The development of content in digital games, such as game worlds, quests,
levels, 3D-models, and textures, is costly and time consuming. To address
this, different approaches to automate the process of creating game con-
tent, often referred to as procedural content generation (PCG), has been
suggested. However, PCG is a complex task and include challenges such
as creating content with variation, coherent style, speed, and correctness.
The research in the thesis is concerned with generating game content with
the aid of game design patterns, both by establishing models and exploring
different methods to generate actual game content for different games. The
methods include implementations of evolutionary computation, i.e. a set
of search-based approaches that searches for instances of game design pat-
terns on different abstraction levels that make up Super Mario Bros. (SMB)
levels and a learning algorithm implementation based on a model (n-grams)
of patterns from the original SMB-game. The different generators were eval-
uated with metrics concerned with the expressive range of the generators
and with user tests.

ix

P U B L I C AT I O N S

This thesis is based on the following papers.

• Patterns and Procedural Content Generation – Revisiting Mario in
World 1 Level 1 [48]

• Patterns as Objectives for Level Generation [49]

• Procedural Content Generation Using Patterns as Objectives [51]

• A Multi-level Level Generator [50]

• A Comparative Evaluation of Procedural Level Generators in The Ma-
rio AI Framework [101]

• Linear levels through n-grams [52]

• Patterns, Dungeons and Generators [53]

• Player Experience Evaluation of Level Generators in the Mario AI
Framework (submitted)

The following paper is related to the research but not included in the thesis

• The Conceptual Relationship Model: Understanding Patterns and Me-
chanics in Game Design [163]

xi

The only legitimate use of a computer is to play games.

— Eugene Jarvis, creator of Defender and Robotron: 2084

A C K N O W L E D G E M E N T S

I would like to thank my supervisors Paul Davidsson and Julian Togelius
for their valuable help and support on this journey. I’m grateful for how
you have approached my troubles and questions, often with a more posi-
tive outlook than I myself have had.
I’m also grateful for the work my co-authors have put into the different re-
search projects and papers; I have learnt a lot from you. Thank you Gillian,
Britton, Noor, Mark and Staffan.
I would also like to mention some of my colleagues that, on a almost weekly
basis, have supported this work. Thank you Olle, Carl Magnus and Jeanette.
Thanks also to my colleagues at Malmö University, both past and present.

I would also like to thank my children Max, Sam and Esme for letting
me fiddle with this project and for bringing me joy and laughter. I love you.

xii

C O N T E N T S

i comprehensive summary 1

1 introduction 3

2 background 7

2.1 Digital games and their industry 7

2.2 Procedural Content Generation 12

2.2.1 Game Content . 13

2.2.2 PCG Research . 19

2.3 Application Domains . 24

2.4 Related Research Fields . 25

2.5 Concepts . 25

2.5.1 Evolutionary Computation 25

2.5.2 n-grams . 30

2.5.3 Design Patterns . 32

2.5.4 Game Design Patterns 34

3 research focus 39

3.1 Research Questions . 39

3.2 Research Limitations . 41

4 methodology 43

4.1 Methodological consideration and motivation 43

4.2 The Design Science Research Framework 44

4.2.1 Environment and Knowledge base 44

4.2.2 Research output . 45

4.2.3 Research activities . 47

4.3 Research process . 48

4.3.1 Literature studies . 51

4.3.2 Evaluation . 51

5 contributions 53

6 conclusions and future work 59

xiii

xiv contents

ii papers 61

7 paper 1 – patterns and procedural content generation 63

7.1 Introduction . 65

7.1.1 Procedural content generation 65

7.1.2 Structures, noise and meaning 66

7.1.3 A little less randomization, a little more variation, please 68

7.2 Design patterns . 68

7.2.1 Design patterns in games 69

7.3 Combining PCG and design patterns 70

7.4 A plumber in a strangely designed land 71

7.5 Looking for Patterns in all the right places 72

7.5.1 Examples of Super Mario Bros design patterns 72

7.6 The plan for pattern-based Mario level generation 74

7.7 Conclusion . 76

7.8 Acknowledgments . 76

8 paper 2 – patterns as objectives for level generation 87

8.1 Introduction . 89

8.2 Background . 90

8.2.1 Design patterns . 90

8.2.2 Game content and game development 91

8.2.3 Fitting into the pattern 92

8.2.4 Related work . 93

8.3 Mario . 94

8.3.1 The original representation 95

8.4 Representation and genotype-to-phenotype mapping 95

8.4.1 Vertical slices . 97

8.4.2 Putting pieces together 99

8.5 Fitness function . 101

8.6 Evolutionary algorithm . 103

8.7 Examples of generated levels 103

8.8 Evaluation . 105

8.9 Discussion . 106

8.10 Conclusion . 107

contents xv

9 paper 3 – pcg using patterns as objectives 111

9.1 Introduction . 113

9.1.1 Background . 114

9.1.2 Examples of patterns . 115

9.2 Rationale . 116

9.2.1 Representation . 117

9.2.2 Evolutionary algorithm 118

9.2.3 Fitness function . 118

9.3 Results and evaluation . 119

9.3.1 Finding patterns . 120

9.4 Expressive range . 124

9.5 Discussion . 128

9.6 Conclusion . 129

9.7 Acknowledgments . 129

10 paper 4 – a multi-level level generator 131

10.1 Introduction . 133

10.1.1 Contributions in this paper 134

10.2 Background . 134

10.2.1 Procedural content generation in games 135

10.2.2 Design Patterns . 135

10.2.3 Benchmark game . 136

10.3 Level Design Patterns in Mario 137

10.3.1 Micro-patterns . 137

10.3.2 Meso-patterns . 138

10.3.3 Macro-patterns . 139

10.3.4 Multi-Level Level Generation 141

10.4 Pattern-based level generation 141

10.5 Automatic level analysis . 141

10.6 Methods . 142

10.6.1 Representation . 142

10.6.2 Evolutionary Algorithm 142

10.6.3 Variation operators . 142

10.6.4 Fitness functions . 144

xvi contents

10.7 Results . 144

10.7.1 Efficiency . 145

10.7.2 Expressive Range . 146

10.8 Future work . 148

10.9 Conclusion . 149

11 paper 5 157

11.1 Introduction . 159

11.2 Related Work . 161

11.3 Experimental Testbed . 163

11.3.1 Generators . 163

11.3.2 Metrics . 165

11.4 Generator Comparison . 169

11.4.1 All Metrics . 169

11.4.2 Expressive Range Visualization 173

11.4.3 Controllability . 174

11.5 Future Work . 175

11.6 Conclusions . 177

12 paper 6 – linear levels through n-grams 181

12.1 Introduction . 183

12.2 Capturing platformer level style with n-grams 184

12.2.1 N-gram style capture . 185

12.2.2 Effects in other domains 185

12.2.3 Information content . 187

12.3 Methods . 188

12.4 Results . 189

12.4.1 Effects of varying n . 190

12.4.2 Effects of varying training data 192

12.4.3 Expressive range . 194

12.5 Large scale comparison . 197

12.6 Discussion . 199

12.6.1 The importance of the representation 199

12.6.2 Pruning the corpus . 200

12.6.3 Linearity in game levels 200

contents xvii

12.7 Conclusion . 201

13 paper 7 – patterns , dungeons and generators 203

13.1 Introduction . 205

13.2 Related work . 206

13.2.1 Game Spaces and Dungeons 206

13.2.2 Design Patterns . 207

13.2.3 Procedural Content Generation 208

13.2.4 Design Patterns used in PCG 209

13.3 Classification of Dungeons . 209

13.4 Patterns . 213

13.4.1 Fundamental Components 215

13.4.2 Micro-patterns . 215

13.4.3 Meso-patterns . 215

13.4.4 Macro-patterns . 219

13.5 Discussion and Conclusions . 219

14 paper 8 225

14.1 Introduction . 227

14.2 Background . 228

14.2.1 Related work . 228

14.2.2 Purpose . 229

14.3 Generators . 230

14.3.1 n-gram Generator . 230

14.3.2 Multi-level Level Generator 231

14.3.3 Occupancy-Regulated Extension 231

14.3.4 Notch . 231

14.3.5 Parameterized Notch . 232

14.4 Experiment set-up . 232

14.4.1 Users . 233

14.4.2 Equipment . 233

14.4.3 Levels . 233

14.4.4 Questionnaires . 233

14.5 Results and Analysis . 234

14.5.1 Entertaining . 238

xviii contents

14.5.2 Challenging . 238

14.5.3 Well made . 238

14.5.4 Mario-like . 239

14.5.5 Intra-generator comparisons 239

14.6 Discussion . 239

14.7 Conclusion . 240

bibliography 243

L I S T O F F I G U R E S

Figure 1 Games timeline 1958-1974 7

Figure 2 Games timeline 1975-1985 8

Figure 3 Games timeline 1986-2000 9

Figure 4 Games timeline 2001-2015 10

Figure 5 Average project cost (in millions of $) per console
type (from [78, p. 423]). 11

Figure 6 Average console development team size (from [78]). . 11

Figure 7 Average development time in months by platform
(from [78, p. 366]). 12

Figure 8 PCG Games timeline 1979-1999 15

Figure 9 PCG Games timeline 2000-2012 18

Figure 10 The general scheme of an evolutionary algorithm as
a flowchart [65]. 26

Figure 11 An example of a crossover operation. 30

Figure 12 An example of a mutation operation [65] 30

Figure 13 An illustration of the relations of the different arte-
facts and evaluations. 49

Figure 14 The 3-horde and The Roof valley patterns. 73

Figure 15 The 3-horde and the Pillar gap patterns. 78

Figure 16 The Empty Valley and the Enemy Valley patterns. . . 79

Figure 17 The Gap, the 3-Path, the Risk and Reward and the
Gap patterns. 79

Figure 18 Mario in a “Multiple path” facing “Enemy”, “En-
emy” and “2-Horde”. 81

Figure 19 Mario leaving a “3-Path” and entering “Risk and Re-
ward”. 82

Figure 20 Mario in an interesting combination of pillars and
“Stair-up”, “Stair-down” and “Roof” without gaps. . 85

xix

xx List of Figures

Figure 21 A simple 2-Path-pattern instance in SMB to the left.
This can be reproduced with only 2 vertical slices
indicated with black frames shown to the right. . . . 97

Figure 22 A 3-horde-pattern in the wild (SMB World 8 Level 1). 98

Figure 23 Adding vertical slices to form an instance of the pat-
tern in figure 22. 99

Figure 24 A 3-Path-pattern. 100

Figure 25 Another 3-Path-pattern. 100

Figure 26 Principal execution of the level generator. 104

Figure 27 One-point crossover, where parent 1 (in red) and par-
ent 2 (in blue) result in mixed-colored offspring child
1 and 2. 104

Figure 28 α-level showing tendencies to overfill levels. 105

Figure 29 β-level showing tendencies to stack patterns. 106

Figure 30 β sometimes stack patterns too close. 107

Figure 31 β almost overfill game space as α does. 108

Figure 32 Not similar–Similar, Blue = α, Red = β and Green = γ.110

Figure 33 Three consecutive patterns in SMB. 115

Figure 34 To the far left we have a vertical slice (micro-pattern)
with a Goomba on low ground. To the left a sequence
of copies of the same slice making up a 3-Horde
meso-pattern that in the original game can be found
quite often as in World 8, Level 1 seen to the centre-
right and in World 1, Level 2 to the far right. 117

Figure 35 The distribution of levels generated with FF1 on the
two expressivity dimensions. 125

Figure 36 The distribution of levels generated with FF2 on the
two expressivity dimensions. 126

Figure 37 The distribution of levels generated with FF3 on the
two expressivity dimensions. 127

Figure 38 An example of a generated level. 128

List of Figures xxi

Figure 39 To the left we have a excerpt from SMB World 1–
Level 1 which can be replicated with only two micro-
patterns (slices) marked with black frames to the right.
It also exemplifies a 2-Path pattern. 137

Figure 40 Examples of similar but still unique slices. The two to
the right can be used to create the structure of Fig. 39

and a sub-set of them can be used to create most of
Fig. 42 . 138

Figure 41 Two meso-patterns (to the left; a sparse Risk and Re-
ward (W1L1) and to the right a dense 3-Path (W4L1). 139

Figure 42 A Macro-pattern example from SMB, stretching over
two screens, where a 2-Path and a Gap continues on
to a Risk and Reward and a Gap onto a 3-Path with an
end consisting of a 2-Horde. 139

Figure 43 Level 1, World 1 from the original Super Mario Bros
game, reimplemented in the Mario AI Framework
(SMB-W1–L1). 140

Figure 44 Level 1, World 8 (SMB-W8–L1) (mid 200 tiles, start
and ending empty ground is cropped). 140

Figure 45 A comparison between the effect of the mutation-
operators. 143

Figure 46 The distribution of levels generated with FFMeso on
the two expressivity dimensions. 146

Figure 47 The distribution of levels generated with FFMacro on
the two expressivity dimensions. 147

Figure 48 The distribution of levels generated with FFMeso,
FFMesoB and FFMacro on the two expressivity di-
mensions. 148

Figure 49 FFMacro levels. 150

Figure 50 FFMesoB levels. 150

Figure 51 FFMeso levels. 151

xxii List of Figures

Figure 52 Example levels from (a) the parameterized notch ran-
domized and (b) the pattern-based weighted count
generators with very low and high leniency values. . 166

Figure 53 Example levels from (a) the parameterized notch ran-
domized and (b) the ORE generators with very low
and high linearity values. 166

Figure 54 Example levels from (a) the notch and (b) the hopper
generators with comparable density values. 167

Figure 55 Example levels from (a) the launchpad and (b) the
GE generators with comparable pattern density values.168

Figure 56 Examples from the original levels that are dissimilar
according to the compression distance, ncd = 0.9. . . 168

Figure 57 A visual comparison of all generators included in
this analysis using all of the metrics. Each genera-
tor is evaluated using six metrics, denoted in differ-
ent colors. The boxplot for each generator-metric pair
shows the median, and upper and lower quartiles.
The whiskers extend to data points that fall within
1.9 IQR of the upper and lower quartile, and outliers
from this range are depicted as small dots. 172

Figure 58 Heatmaps visualizing the expressive range of each
generator according to the Density (x-axis) and Le-
niency (y-axis) metrics. The order of generators (left
to right, top to bottom) is: GE, hopper, launchpad,
launchpad-rhythm, notch, parameterized notch, pa-
rameterized notch-randomized, ORE, original levels,
pattern-based-count, pattern-based-occurrence, pat-
tern-based-weighted-count. 176

Figure 59 Heatmaps visualizing the compression distance ma-
trix, showing the impact of varying parameters. (a)
Parameterized Notch generator. (b) Launchpad with
varied rhythm parameters. 176

Figure 60 Different slices (micro-patterns) and a Goomba-horde. 186

List of Figures xxiii

Figure 61 From left to right: the 32 most common slices from
the original SMB levels. These slices would therefore
be the most frequent unigrams. 188

Figure 62 Unigram-based (n = 1) levels with SMB World 1–
Level 1 as corpus. 190

Figure 63 Bigram-based (n = 2) levels with SMB world 1–level
1 as corpus. 191

Figure 64 Trigram-based (n = 3) levels with SMB 1–1 as corpus. 192

Figure 65 Trigram-based (n = 3) levels with SMB 1–1, 1–2 as
corpus. 193

Figure 66 Trigram-based (n = 3) levels with SMB 1–1, 1–2 and
2–1 as corpus. 194

Figure 67 (n = 3) levels with pruned corpus 2600 slices (15

levels from the original SMB with the first screen of
each level removed). 195

Figure 68 Leniency and Linearity for 1000 above ground pru-
ned levels. Higher Leniency means more difficult.
Higher Linearity means flatter levels. 196

Figure 69 A dungeon in The Legend of Zelda (Connected Rooms). 211

Figure 70 A dungeon in Rogue (Rooms & Corridors). 211

Figure 71 Dungeons in Ultima I (Maze) and Ultima II (Labyrinth).212

Figure 72 A dungeon in Diablo (Open area). 212

Figure 73 Example of levels: a) n-gram, b) MLLG, c) ORE, d)
Notch and e) P-Notch. 241

L I S T O F TA B L E S

Table 1 The basic evolutionary computing metaphor linking
natural evolution to problem solving [65] 26

Table 2 3-gram probability values for an n-gram predictor [149] 31

Table 3 Relationships between research questions (RQ) and
papers . 53

Table 4 Patterns for Super Mario Bros. grouped by theme
part 1. 77

Table 5 Patterns for Super Mario Bros. grouped by theme
part 2. 78

Table 6 4-Horde Pattern Description. 80

Table 7 Pillar gap Pattern Description. 81

Table 8 Enemy valley Pattern Description. 82

Table 9 Risk and Reward Pattern Description. 83

Table 10 Stair up Pattern Description. 84

Table 11 Examples of patterns for Super Mario Bros. 94

Table 12 Patterns supported in the fitness function. 102

Table 13 Results by level. 109

Table 14 Fitness value variation for 1000 levels counting fit-
ness value based on rules; only one occurrence (FF1),
multiple occurrences (FF2) and weighted multiple
occurrences (FF3). 120

Table 15 Found patterns (rules) in FF1-FF3 together with the
calculated weight for FF3 based on 1000 runs. 121

Table 16 Found patterns (rules) in FF1-FF3 together with the
calculated weight for FF3 based on 1000 runs. 122

Table 17 Found patterns (rules) in FF1-FF3 together with the
calculated weight for FF3 based on 1000 runs. 122

Table 18 Found patterns (rules) in FF1-FF3 together with the
calculated weight for FF3 based on 1000 runs. 123

xxiv

List of Tables xxv

Table 19 Found patterns (rules) in FF1-FF3 together with the
calculated weight for FF3 based on 1000 runs. 123

Table 20 Found patterns (rules) in FF1-FF3 together with the
calculated weight for FF3 based on 1000 runs. 124

Table 21 Patterns for Super Mario Bros. grouped by theme
part 1 [48]. 152

Table 22 Patterns for Super Mario Bros. grouped by theme
part 2 [48]. 153

Table 23 Found patterns (rules) in FFMeso, FFMesoB and FF-
Macro based on 100 levels and 1000 generations per
level. 153

Table 24 Found patterns (rules) in FFMeso, FFMesoB and FF-
Macro based on 100 levels and 1000 generations per
level. 154

Table 25 Found patterns (rules) in FFMeso, FFMesoB and FF-
Macro based on 100 levels and 1000 generations per
level. 154

Table 26 Found patterns (rules) in FFMeso, FFMesoB and FF-
Macro based on 100 levels and 1000 generations per
level. 155

Table 27 Found patterns (rules) in FFMeso, FFMesoB and FF-
Macro based on 100 levels and 1000 generations per
level. 155

Table 28 Found patterns (rules) in FFMeso, FFMesoB and FF-
Macro based on 100 levels and 1000 generations per
level. 156

Table 29 Comparison of found Macro patterns 156

Table 30 Overview comparison of level generators: mean value
(standard deviation) of each metric on the output of
each generator. 178

Table 31 Controllability of the main generators tested in this
paper, using vocabulary from [200]. 179

Table 32 Linearity and Leniency. 197

xxvi List of Tables

Table 33 Linearity & Leniency comparison between original &
average value (1000 generated levels). 198

Table 34 Fundamental Components 210

Table 35 Micro-patterns part 1. 216

Table 36 Micro-patterns part 2. 217

Table 37 Micro-patterns part 3. 218

Table 38 Meso-Patterns part 1 220

Table 39 Meso-Patterns part 2 221

Table 40 Macro-Patterns . 222

Table 41 Most entertaining levels by row against levels column. 235

Table 42 Most challenging levels by row against levels column. 235

Table 43 Most well-made levels by row against levels column. 235

Table 44 Most Mario-like levels by row against levels column. 236

Table 45 Compared with the same generator part 1. 236

Table 46 Compared with the same generator part 2. 237

L I S T I N G S

Listing 1 The general scheme of an evolutionary algorithm in
pseudocode [65] . 27

Listing 2 The Singleton class declaration [82] 34

xxvii

A C R O N Y M S

AI Artificial intelligence

DLC Downloadable content

DPG Design Patterns in Games

EC Evolutionary computation

FPS First person shooter

HCI Human computer interaction

MMO Massively multiplayer online game

NPC Non-playable character

PCG Procedural content generation

QA Quality assurance

RPG Role-playing game

RTS Real-time strategy

SBPCG Search-based procedural content generation

SMB. Super Mario Bros.

xxviii

Part I

C O M P R E H E N S I V E S U M M A RY

1I N T R O D U C T I O N

Digital games is a large industry generating sales around 47 billions dol-
lars Worldwide in 2014 [216]. In the U.S. four out of five households own
a device to play games on and houses 155 million players that generates
15 billions dollars in sales on a annual basis [67]. As a market it provides
economic growth all over the World, but mostly in the developed countries,
particularly Japan, North America and Europe where the large publishing
companies and the large consumer markets are located. Digital game devel-
opment demands a variety of roles of the workforce: software developers,
software testers, visual artists, game designers, sound designers, musicians,
writers, administrative staff and sometimes even more specialised roles, de-
pending on the size of the developer studio.

However, the game industry is challenged with a set of problems. The
high-end games typically takes 18-36 months to develop and the cost can
be over 100 million dollars not counting marketing budgets [178, 4]. A con-
tributing factor to the cost and time consumed while developing games
is the complexity of the software components being developed, both with
respect to the technical and the entertainment aspects. Typically, a digital
game could be divided into two major components; the game engine and
the content. The game engine upholds the rules of the game, provides the
user with an interface and projects an image visualising the game state. The
content of a game could be described as the things that is contained within
a game. Examples of individual pieces of game content ranges from game
worlds, objects in the game world to interact with, background stories, tasks
for the player to perform, to graphics and music.

The continuous advancement of the hardware platform (like gaming PCs,
Playstation 4, Xbox One, etc.) and its capabilities (larger memory, faster pro-

3

4 introduction

cessors and graphics) will increase development cost as well as develop-
ment time [79, 115]. Similarly, due to the increased complexity of the game
engine, every piece of content will become more time consuming to pro-
duce [79]. For instance, a 3D-model in a game needs to be modelled with
higher detail to look good in higher resolution. Games with large amounts
of content are also in themselves a problem in that they will consume large
amount of storage space.

Furthermore, digital game projects are sometimes troubled by the fact
that it is hard to find enough staff in time to deliver the different compo-
nents on time, which is both a lifecycle problem and an organisational prob-
lem. The competences needed to solve the various tasks varies during the
development lifecycle; different skills are needed in different amounts. For
instance, during the concept phase only a small crew of about ten persons
is needed in contrast to during development and testing where staff could
be counted in hundreds. If a game studio is working on multiple titles,
the different projects overlap of each other, may cause additional problems,
both during upsizing and downsizing of projects and phases. As if it was
not enough that project deliverables are more time consuming and costly
to produce, sometimes a fair share of project artefacts are scrapped during
the development process due to changes in requirements [35]. The objects
produced during game development projects are affected in other aspects
as well, and rework will be needed of not just software, but also art assets,
as well as video, music and audio recordings that have to be changed or
created from scratch.

Approaches to automatically create content, often referred to as Proce-
dural Content Generation (PCG) to limit the impact of these problems exist
and have done so for some time. A classic example of PCG dating back
to 1984, is the space trading game Elite [3]. The main advantage of relying
on online generation of the game world (galaxies and star systems) [214],
instead of designing it by hand was that it allowed the developers to let
the game and not the content to take up almost all of the available inter-

introduction 5

nal memory. Moreover, by introducing PCG the developers also made the
player able to explore a huge game world. The implemented system was
based on Fibonacci sequences together with an initial seed value picked by
the two developers. Since most of the information about the game world
was automatically generated in real-time during game play, this approach
allowed the players to visit eight complete galaxies in the game. But how-
ever powerful the solution was, the developers had to manually pick seed
values and search through the content in order to prevent profane names
of planets and other problematic aspects of the content. The PCG approach
used in Elite, demonstrates the advantages of the approach, but also its dis-
advantages. If PCG is to be used efficiently it has to be controlled in a more
efficient matter than by letting a human manually check its output. Never-
theless, PCG allow game developers to save resources during production
but it also allow them to make different games. With PCG the content can
be endless and adaptive, thus giving the player a never-ending game uni-
verse to explore and content that is adjusted to the player’s way of playing.
PCG allow developers and designers to explore the possibilities of the game
and similarly it allows researchers to understand the game design process.

The research presented in this thesis focuses on automatic generation
of digital game content using design patterns to guide the process to specific
solutions. Design patterns is a design method were a pattern describes a
solution to a recurring problem in such way that it is possible to reuse in
different situations. Design patterns are used together with different algo-
rithms to generate game content. The goal of this approach is similar to
other PCG methods, namely; to reduce cost, to contribute to solve staffing
problems, and to limit rework of digital game content but still fit into the
game development lifecycle. Further, the approach is also suitable for the
game design process and attend to content-related issues and not only focus
on the automatic generation activity. The approach proposed in the thesis
have been applied to area of level generation, especially for 2D representa-
tion but also for some 3D representation of game space. In particular, the
approach of searching for patterns in game content on different levels of ab-

6 introduction

straction where smaller patterns on a lower level makes up more complex
patterns on higher levels, could be used to generate content, not just for
games, but for any virtual environment including training scenarios and
simulators.

2B A C K G R O U N D

This chapter presents the context for the thesis; digital games, as well as the
central knowledge area for the research, namely; Procedural Content Gene-
ration. From the knowledge area the chapter moves onto the application
domains and the related research areas. The chapter will conclude with
concepts that are essential for the thesis: Evolutionary Computation, n-grams
and Design Patterns.

2.1 digital games and their industry

Digital games1 have over the last 50 years (see Fig. 1ff) evolved from sim-
ple space shooters (Spacewar! [217]) and sport games (PONG2 [16]) to large
open world games3 and massive multiplayer online games (MMO4). During
this time, digital games have moved from obscurity to a more mainstream
position within the entertainment industry. In a recent survey the US En-
tertainment Software Association [66] found that 51% of U.S. households
own a dedicated game console and that 58% of the U.S. citizens play video
games. Similarly, 59% of 6-65 year olds in the U.K. “are gamers” according
to a BBC-report [173].

1958 1960 1962 1964 1966 1968 1970 1972 1974

Te
nnis

fo
r Tw

o

Sp
ac

ew
ar

!

Lunar
Lan

der

Com
puter

Sp
ac

e

M
ag

nav
ox Odysse

y

PONG

Figure 1: Games timeline 1958-1974

7

8 background

50 years is a rather long period of time, at least in a consumer and/or pro-
duction perspective, especially if you consider the technical development of
digital games.

As a way to understand this period of time and the challenges the game
industry are faced with, we will use the notion of (technical) platform5 gen-
erations. A generation typically stretch for 5-7 years, and members (prod-
ucts or platforms) of a generation share functionality and traits. A platform
from a previous generation will in some aspects seem dated in relation to
the current. At the time of writing, the current generation is the eighth ge-
neration6 and consists of the game consoles Xbox One, Playstation 4 and Wii
U. A (console) generation can be identified as a de facto standard where the
following determinants are important; technological innovations, switching
costs, installed base and complementary products [80].

Another centrepiece of the digital game hardware advancement is the ad-
vancement in “technological innovations based on video graphics capabil-
ity” [80]. Other technological enhancements of the platform typically means
more memory (primary and secondary storage), more storage space in the
off-line read only storage (cartridges, optical discs, etc.) and more compu-
tational power. However, this development mainly affects the player expe-
rience in a positive way. On the developer’s side of things, the need for
specialised knowledge occurs. After a new console (generation) has been
introduced, we can observe the following trends;

• new hardware investment (consumer & developer) [115, p. 57]

• development teams increase in size (developer) [78, p. 366]

1976 1978 1980 1982 1984

Bre
ak

out

Sp
ac

e In
vad

er
s

Aste
ro

id
s

Pac
-M

an

Donkey
Kong

Sp
ac

e In
vad

er
s

Te
tri

s
Su

per
M

ar
io

Bro
s.

Figure 2: Games timeline 1975-1985

2.1 digital games and their industry 9

• development time for an average project increase (developer) [78, p.
366]

• increased expectations (consumer) [78]

• average project cost increase (publisher and developer) [78, p.423]

• increased platform complexity (developer) [115]

Other changes are of a more temporarily nature like the steep learning
curve developers face when switching to another platform [115, p. 57].

From a certain viewpoint it might seem like a strange effect; how can
the change of the platform in a positive way affect the development of a
game in a (production-wise) negative way? What drives the higher cost,
longer development time and forces the need of larger team size (and thus
more complex to manage)? More advanced video graphics forces the need
of 3D-graphics models and textures with higher details, which in turn takes
longer time to model for the visual artist7. The larger available space on stor-
age devices allows larger game worlds, more non-player characters, more
buildings, longer levels, more story, more items, more enemies, more quests,
etc., which in turn takes longer time to design and develop.

How large is the effect of this change? During the previous half century,
for every new game console generation, the project scope and size is about
twice of the previous generation’s scope and size [78] (see Fig. 5). For in-
stance, the MMO World of Warcraft [33], contains more than 12000 quests.
The open world action-adventure game Just Cause 2 [19] which is in a trop-

1988 1990 1992 1994 1996 1998 2000

Fin
al

Fan
tas

y,
NetH

ac
k

Su
per

M
ar

io
W

orld

Sonic
th

e Hed
geh

og

Doom
To

m
b Raid

er

Half
-L

ife
, Sta

rC
ra

ft

The Sim
s

Figure 3: Games timeline 1986-2000

10 background

ical island setting has a virtual world with a size of over 1000 km2, that
needs to be filled with interesting things to do and interact with.

If this trend of doubled cost, doubled team size and longer development
time continues, it will force continuous change on the game industry and its
consumers, either by forcing the developers to change their way of working,
changing the product or changing the consumers expectations on the prod-
uct. One way of prevailing the current state of the game industry and mar-
ket is to increase the use of tools that support to the development, preferably
without causing to much change in other areas. Another possible outcome
is that the market only is able to sustain a smaller set of companies, thus
limiting the amount of games produced and with this, limiting the artistic
expression and diversity. On the other hand, independent8 game develop-
ers and mobile games have over the last years been able to counter this
trend.

From a software architecture standpoint the approach of utilising tools is
already supported in the game industry, since most digital game develop-
ment use Separations of Concern [56, 176] to facilitate development. A com-
mon approach is to organise the source code structure or the software archi-
tecture into a “game engine” (software components) separated from the art
assets (data) [93]. In essence, the game engine could be viewed as a software
framework with the sole purpose of supporting the creation and develop-
ment of digital games. Core functionality of a game engine is typically; a
render engine (2D and/or 3D graphics), animation, a physics engine (han-
dling collision detection and response), memory management and sound.
If needed other tasks could be handled by the game engine cover; artificial

2002 2004 2006 2008 2010 2012 2014

W
orld

of W
ar

cra
ft

Ju
st

Cau
se

2

Gra
nd

Theft
Auto

V

Figure 4: Games timeline 2001-2015

2.1 digital games and their industry 11

NES SNES PSX PS2 PS3

0

10

20

30

Figure 5: Average project cost (in millions of $) per console type (from [78, p. 423]).

NES SNES PSX PS2 PS3

10

20

30

40

Figure 6: Average console development team size (from [78]).

12 background

NES SNES PSX PS2 PS3

5

10

15

20

25

Figure 7: Average development time in months by platform (from [78, p. 366]).

intelligence, scripting and networking. Advantages of using a game engine
could be software reuse and parallel development. Major reuse gain include
actual code reuse by using the code and components in different games or
supporting multiple target platforms and localisation markets. The modifi-
cation of art assets from source data files to runtime use in digital games,
is usually referred to as the content pipeline. Software tools are used by art
assets creators (level designers, 2D- and 3D-artists, etc.) but software com-
ponents can be used to support automatic (co-)creation and reuse of those
assets. One suggested method is to apply a (semi)-automatic process called
Procedural Content Generation (PCG).

2.2 procedural content generation

This section of the thesis begins by explaining the name Procedural Content
Generation. It will then go on to give a set of examples of content in more
detail, and exemplify how PCG has been used in the game industry to-
gether with some related examples from the research arena. Finally, before

2.2 procedural content generation 13

transitioning into the next section, it will review the literature concerning
PCG and point to research challenges in the area.

As previously stated (see chapter 1), a digital game can be divided into
two components; the game engine and the content. Procedural Content Gene-
ration has over the last 10 years been the topic of numerous research papers
and it has been used in commercial as well as small independent game pro-
ductions even longer. However, the name Procedural Content Generation is
a bit unclear and has been, argued to be an unsuitable name [43], especially
when considering other research areas which also use algorithms to gen-
erate artefacts, like procedurally generated kitchen designs [76]. However,
“procedural” in PCG was coined as a term in Computer Graphics where
procedural denotes a computational process-derived artefact [179, 43].

Notable definitions describe PCG as “creating game content automati-
cally, through algorithmic means” [228] or that PCG “is the application
of computers to generate game content, distinguish interesting instances
among the ones generated, and select entertaining instances on behalf of
the players” [96].

2.2.1 Game Content

Game content could be expressed as the things that is contained within a
game, like the game world to move around in and where event takes place,
game objects to interact with, game tokens to move (units), a background
story for the player or the game world, tasks and assignments for the play-
ers to complete, but also graphics with variation, sound and music based
on events in the game. The following examples are chosen because of their
relevance to the work presented in this thesis.

quest is a task a player character or a group of player characters have to
complete to gain a reward. The reward can be in-game items, support-
ing Non-Player Characters (NPCs), new skills, access to new areas or
in-game currency. Quests can be linked together in a sequence or a
chain to advance a plot or story the game has. Some quests or quest

14 background

chains may have prerequisites that must be fulfilled before the player
can start any or some of the quests. Usually the game has a set of
quests, so called side-quests, tied to the completion of the game and
a set of quests that are not required to complete to win the game.
Quests are usually part of role-playing games (RPGs) or similar types
of games. An RPG is a game in which the player assume a role of a
character. A central part of the game is character development both
in relation to the narrative and the skills the character has. Quests in
other types of games than RPGs are sometimes called missions (cf.
Grand Theft Auto V [178]).

dungeon A single level or a set of levels in an RPG that is set in a un-
derground complex, castle, cave or ruin. Sometimes several dungeons
are connected via an overworld that acts like a hub, often with cities
and a wilderness were other types of adventures or quests takes place.
The cities may function as a replenishment zone where the player can
trade found objects or treasures for better equipment, weapons, magic
spells or healing potions. A dungeon often contains both enemies, hid-
den passages, locked doors and puzzles. A common theme is to let the
dungeon be a labyrinth or at least have a non-trivial layout allowing
the player to explore unknown game space. The overworld often has
the function of being the world where the game takes place and is
sometimes referred to as world map, especially when the scale is dif-
ferent from the scale in the dungeon.

level Most games are divided into sections of game space with a discrete
change in difficulty [143]. Levels may represent locations or have objec-
tives for the player to fulfil. In some games like Super Mario Bros. [158]
the objective is simply to move the avatar from the starting point to
the end of the level. When the objective is completed the player usu-
ally continues to the next level, perhaps via a certain place in the level.
If the player fails the level, the player usually have to start from the be-
ginning of the level or at certain predefined points (check points). The
concept of levels is realised differently in different types of games. In
RPGs, Real-time Strategy games (RTS) and multiplayer games a level

2.2 procedural content generation 15

is often referred to as a map. An RTS game is a kind of strategy game
where the game progress in realtime and not in turns. The player ma-
noeuvre units to control areas of the game space and to destroy the
opponents units and resources. RTS games often include base build-
ing, resource gathering, technological advancement and building new
units. Other common names for levels are; area, zone and stage. Some-
times levels are grouped together by the same gameplay theme with
the same type of enemies or obstacles. These grouped levels are often
called a world. For older games the dividing of the game space was
a necessity due to memory constraints. In classic arcade games like
Donkey Kong [157] the levels only consisted of a single screen, often
called a board.

Influential games with PCG are Rogue, Elite, Civilization, and Diablo. They
have all spawned sequels and in some cases spin-offs and boardgames.
There are however, several prominent examples of different usage of PCG
in independent and commercial games (see Fig. 8 and 9):

age of wonders : shadow magic is a turn-based strategy game with a
random map generator that allows the player to play new stand-alone
scenarios [233].

alien swarm is a top-down shooter that incorporates two PCG compo-
nents; the AI Director that dynamically generates swarms of oppo-
nents based on a set of parameters and the TileGen which allow the

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998

Akala
beth

: W
orld

of Doom

Rogue

Elit
e

Civili
za

tio
n

UFO: Enem
y Unknow

n

Diab
lo, Dag

ger
fal

l

Figure 8: PCG Games timeline 1979-1999

16 background

user to build a set of rooms and define rules on how these rooms can
be connected in order to generate a level [238].

borderlands I and II utilise the Gearbot to create most of the randomised
objects (weapons, enemies, armour stats and some of the orientation
of stairs and cover) in the game [90, 91].

civilization is a turn-based macro-scale strategy game with a world
map generator [147]. Civilization is an influential game franchise that
has inspired other games but also resulted in some spin-off games like
Sid Meier’s Colonization [148] and Sid Meier’s Alpha Centauri [72] both
having world map generation.

daggerfall from Bethesda used pseudo-randomisation for several dif-
ferent types of content in this RPG game, both before shipment and
during runtime. The randomised content consists of dungeons, NPCs,
rumours told by NPCs, layout of cities, magical items, etc. [27].

diablo by Blizzard procedurally generates different dungeon levels for
every play-through which includes items and monsters (placement,
type and amount) [34].

dwarf fortress is a management game where the player controls a set-
tlement of dwarves [6]. During the game world generation phase the
player can adjust a set of parameters like size and length of history.
A midpoint displacement algorithm works as world generator and
it includes elevation, rainfall and mineral distribution. Areas are di-
vided into biomes which decides its population. Erosion and rivers
are added to the world and the history of world is generated includ-
ing how civilisations, races and populations spread over the world.

elite [3] uses Fibonacci sequences [214] and a look-up table, allowing the
player the possibility to visit 248 galaxies. Due to concern for the users,
this was scaled down to only eight galaxies with 256 planets to ex-
plore. However powerful the solution is, the developers had to man-
ually search through the content in order to prevent profane names

2.2 procedural content generation 17

of planets and other problematic, but more game mechanic oriented,
aspects of the content.

far cry 2 Ubisoft Montreal worked together with World Machine [242] to
generate the terrain and solved the generation of enemies and events
with PCG [236].

.kkrieger was a First-person shooter game (FPS) developed by a German
demogroup called .theprodukkt at a 96 kB game competition. Due to
the limitation of storage space, procedural methods are used to handle
textures and 3D-models [69]. An FPS is a projectile weapon-based
game in a first-person perspective for the player.

minecraft is an open world game in a procedurally generated world
divided into biomes including deserts and jungles. The world is gen-
erated as the player moves in it and the generation is based on a single
seed that initiates three 2D Perlin noise [171] heightmaps (overall el-
evation, terrain roughness, and local detail) that set the shape of the
world [150].

left 4 dead I and II are both cooperative survival horror FPS games set
in a urban environment firmly haunted by a zombie outbreak. The
game uses an AI-director that orchestrates dynamic spawn points for
both enemies and items. Similarly, the AI-director varies the music to
create a dramatic setting, as well as modifies layout, textures, objects
and animations for greater variation [235].

rogue is a survival dungeon crawl RPG that takes place in procedurally
generated dungeons [232]. The game was highly influential and em-
anated in several spin-off games, which resulted in a new genre games
called rogue-like which usually have the following characteristics: pro-
cedurally generated levels, turn-based gameplay and permadeath (or
permanent death) of the player-character.

speedtree is a commercial middleware system for vegetation generation
which has been used in over 1,000 games [105]. The developers of

18 background

SpeedTree: Interactive Data Visualization have developed a special ver-
sion to be used for film productions as well.

spore is a god game where the player takes control over a creature and
makes choices for the creature and potentially its civilisation [140].
The game uses procedural content to handle how creatures moves
since the player’s different choices affect how the creature looks.

ufo : enemy unknown is a science fiction strategy game that uses a gen-
erator to create UFO crash sites or UFO landings [153]. The generator
places different prefabricated terrain sections from a library covering
different environments (urban, desert, temperate climate or farmland)
to match the landing site where the player lands.

In games where the game world is procedurally generated the players are
encouraged to explore and in games where the levels are procedurally gen-
erated the players are encouraged to play the game again. Moss [152] argues
that games like No Man’s Sky [83] with their vast content has “a singular pur-
pose: to make the player feel lonely”. As previously mentioned, PCG may
be used to save time and resources but PCG can also allow new types of
games likes Dwarf Fortress and Minecraft which generates huge amounts
of content for the user to interact with, but also provide aesthetic values for
the player when observing the world. Both Dwarf Fortress and Minecraft
are unique games and would not been done in their special way without
the aid of PCG.

2002 2004 2006 2008 2010 2012

Age of W
onder

s

.K
KRIE

GER

Dwar
f Fortr

es
s

Far
Cry

2
, Left

4
Dea

d, Sp
ore

Bord
er

lan
ds,

M
in

ec
ra

ft

Alie
n

Sw
ar

m

Sp
ee

dtre
e

Bord
er

lan
ds II

Figure 9: PCG Games timeline 2000-2012

2.2 procedural content generation 19

Correspondingly, researchers in academia have explored different usage
of PCG for other uses. As well as in the game industry the examples are
expressing different usage. Due to the amount of studies performed, only a
handful are mentioned here to show the variety in the research.

speedrock by Dart et al. [54] is a lightweight tool using a 3D L-system to
generate rocks for games and virtual worlds not unlike the commer-
cial PCG middleware SpeedTree for vegetation generation.

starcraft maps generation in this approach a multi-objective evolu-
tionary search [225, 224] is used to generate maps for the RTS game
StarCraft [32].

quest generation Doran and Parberry [60] constructed a quest gener-
ator after a structural analysis of MMORPGs. Skyrim [26], the sequel
to Daggerfall, has a special type of generated quests called Radiant
Quests.

2.2.2 PCG Research

Togelius et al. [228] suggested a taxonomy for PCG, which denotes differ-
ent dimensions of PCG approaches. The five different dimensions are as fol-
lows; 1) online versus offline, 2) necessary versus optional content, 3) random
seeds versus parameter vectors, 4) stochastic versus deterministic generation,
and finally 5) constructive versus generate-and-test.

In the case of online versus offline, it should be noted that, this covers
the aspect of when a PCG system generates content, during the running
of the actual game (online) and before the game is shipped (offline). The
necessary versus optional dimension express the need for correctness of the
content and how important the content is to the player experience. The nec-
essary content must be correct due to its function in the game, if it is not
correct the player will not be able to continue through the game. Regarding
the random seeds versus parameter vectors dimension, it illustrates, whether
the algorithm uses a single random number or if it utilises a multidimen-
sional vector to generate content. As for the stochastic versus deterministic

20 background

dimension it demonstrates whether the output of the algorithm is different
or the same every time with the same parameter setup. Concerning the last
dimension, constructive versus generate-and-test it describes if the algorithm
has an internal control function evaluating the generated content. In this as-
pect, the constructive can generate content in one step and it is certain that
it is good enough whereas the generate-and-test continuously generate and
evaluate until the content is good enough.

Togelius et al. [228] argue that search-based PCG (SBPCG) is a special
case of the generate-and-test approach since it does not just accept or reject
content, but it grades the content with the aid of a fitness function and pro-
duce new content with higher fitness from prior candidates. SBPCG is an
approach applying stochastic search and optimisation algorithms to gener-
ate content. The taxonomy was initially suggested in a prior paper [226]
but was more in depth explained and contained a survey of SBPCG re-
search [228].

These five dimensions have been extended with two more; generic ver-
sus adaptive and automatic generation9 versus mixed authorship [188, 231]. The
first extension covers the aspect of whether the content is generated for all,
or if the content is generated for every individual player.

An example of an adaptive approach in PCG was made by Shaker et al.
[189] which used a model based on an empirical data set, a mechanism
that adapts level design parameters to each player’s playing style and an
evaluation with both algorithmic and human players. The domain used is
the Super Mario Bros. the clone Infinite Mario Bros [172].

The other extension demonstrates possible ways for humans to interact
with the generating process. Traditionally human input to guide the ge-
neration process was focused to the design of the PCG system, but with
the mixed authorship the designer or player can co-author the content and
interaction may happen on multiple points in time. During the last cou-
ple of years different variants of sketching-like interface and turn-taking
PCG tools [197, 245, 129, 130, 132, 174, 128]. Smith et al. [203, 208] anal-
ysed platform game levels and constructed the Tanagra, a mixed-initiative

2.2 procedural content generation 21

level generator. Tanagra allows the designer to interact with the PCG tool
to create levels by letting the designer draw parts of a level which is then
complemented by a constraint solver algorithm that generate content that
fills in the gaps. The geometry is generated with the aid of patterns on
two different levels; single beat [204] and a slightly higher level which acts
as composite patterns of the previously mentioned single beat patterns. Re-
lated to the human interaction with the generating process is the problem
of maintain an understanding of the content generated. The problem is in-
herent to PCG due to the vast amount of content a generator can create.
Smith and Whitehead [202] suggested the concept of Expressivity for level
generators to analyse the space of levels that can be created.

An example of PCG without the mixed authorship approach dimension
of having a designer interacting with the tool is the Occupancy-Regulated
Extension (ORE) generator. Instead, it was initially designed to capture the
aspect of human creativity to produce interesting level designs by merging
humanly pieces of pre-made sections to form new levels [139]. It was sub-
mitted to the Level Generation Track of the IEEE CIS-sponsored 2010 Mario
AI Championship [190] a competition where generators competed in IMB
levels.

Conversely, the quality of a specific game content is intimately tied to
the game and its context. A perceived high-quality content in one game (or
game genre) might be considered low quality in another game (or game
genre). Aspects of game content could further be discussed in how var-
ied (high variation or low variation) or how repetitive (often repeated or
unique) it is.

Smith [201], analyses the role of PCG in games from a game design per-
spective with the aid of the MDA-framework (Mechanics, Dynamics and
Aesthetics). The MDA-framework [103] is a formal approach to understand
games through three connected aspects: the mechanics (connected to the
rules of the game), the dynamics (how the rules functions in action with
other rules) and the aesthetics (which covers the player’s experience of the

22 background

game). Smith [201] argues for several “nuances” that unpack the common
replayability argument of PCG.

Among these three dynamics motivate different kinds of replayability
than previously demonstrated in the research discourse; 1) reacting in a
surprising environment, 2) building generator strategies, and 3) practising
in different environments. The first one leads to replayability in a manor
of playing new content on each occasion while the second leads to replaya-
bility due to building new experiences around the different abilities of the
generator. Lastly the third facilitate replayability by using know mechanics
in new scenarios.

Another design-centric approach to understanding PCG is Khaled et al.
[117] who discussed PCG as design metaphors to bridge the gap between
PCG research in game AI and more design centric areas as human com-
puter interaction (HCI). The design metaphors for PCG in games are the
following: tool, material, designer, and expert [117]. Contemplating the differ-
ent roles PCG can take, might extend the use of PCG since most research in
PCG falls under the label tool.

PCG as a tool means that the approach explains PCG as a device or in-
strument that is manipulated to fulfil a specific goal like changing the envi-
ronment or extending the user’s abilities. However, given the use of a PCG
system the different research artefacts could fulfil more than the role of the
tool.

Materials are dynamic and reconfigurable substances that can be modi-
fied by the designer. In effect, this means that both the output of a PCG
system and the PCG system itself could be viewed as material when the
designer can manipulate them, for instances by changing parameters10 or
by selecting specific areas and letting Speedtree [105] generate vegetation for
that part of the game world or the generator that generates generators by
Kerssemakers et al. [116].

PCG as a designer denotes a role where the PCG system takes on a design
task in contrast to the two previous roles, where a designer must be present.
A PCG system working as a designer solves both design as well as meta-

2.2 procedural content generation 23

design activities. Examples of where a PCG system solves tasks as designer
include both generating games [221, 38, 37, 44] as well as caricatures of
games [198] in order to understand how design works [117].

The final role, expert, covers two different types of experts; player and do-
main expert. The first expert demonstrates analysis, interpretation and adap-
tation suggestions related to player experience. The second expert, provides
analysis and interpretation from specific domain knowledge. The domain
knowledge could be used by a designer to change the design artefact. Ex-
amples of player experts [222, 168, 169] and domain experts [10] may look
similar but when the first provides input on experiences as fun, challenge
and frustration, the second one provides knowledge on how to generate
levels that induce the desired experience for the player.

Togelius et al. [229] suggested a set of long-term goals and research chal-
lenges for PCG. The long-term goals are Multi-level Multi-content PCG, PCG-
based Game Design and Generating Complete Games.

For Multi-level Multi-content PCG Togelius et al. [229] envisioned as a sys-
tem that can generate multiple types of quality content at multiple levels of
granularity in a coherent fashion. PCG-based Game Design on the other hand,
is a game or a whole game genre in which PCG is the central mechanic with-
out which the game could not exist at all. For the goal of Generating Complete
Games to be completed, PCG would have to generate a whole game from
scratch, including the rules and game engine.

From these long-term goals it was argued that work addressing any of
the accompanying nine more concrete research challenges would contribute
to progress towards fulfilling the long-term goals of PCG. Amongst these,
two research challenges are related to the research in the thesis; Represent-
ing Style and General Content Generators, together with one of the actionable
items, Competent Mario Levels. Competent Mario Levels refers to creating gen-
erators with the ability to generate varied, interesting playable, entertaining
and good-looking levels. In PCG, representing style, refers to activity of
defining a generative model that follows a particular designer’s recognised
style or a particular school of design thinking. Examples of physical world

24 background

of design styles are for instance, Art Deco and its predecessor Art Nouveau
which are clearly separable. Arguably the same would be true for game
content (cf. Super Mario Bros. vs. Sonic the Hedgehog [158, 212]).

2.3 application domains

Most of research in this thesis is centred on content for the classic 2D plat-
form Super Mario game series with total sales over 290 million copies since
the release of the first game in 1985 [158]. In addition to its influential de-
sign and great impact on the market it has also been used frequently in
research in different forms [116, 186, 168, 169, 227, 187, 189], but mostly
tied to the Mario AI Benchmark (cf. [223, 190, 113]) which, in turn, is based
on the clone Infinite Mario Bros [172].

The game Super Mario Bros. [158] is divided into eight “worlds” that con-
tains four levels each. Every world contains three levels that stretch from
148–377 tiles long and 14 tiles high, that functions as part of the Mush-
room Kingdom and one level that functions as a “Boss” fight level in a castle
where the hero Mario is faced with a different opponent from the other
levels; i. e. Bowser (or one of his impostors placed to guard the initial seven
castles).

The player guides Mario from a position on the left through levels that
scrolls to the right. In a level Mario can walk, jump and run. Mario’s op-
position consists of moving enemies, gaps to jump over and fixed blocks
that sometimes breaks or contain coins or power-ups. The power-ups grow
Mario to the double size, grant him an extra life, or let him shoot fireballs.

Another popular game genre is the fantasy Roleplaying Game (RPG) style
of games. Besides procedurally generated quests [59] and the combined ge-
neration of game space and quests [62, 61] the game space artefact (dun-
geons) have been the interest of researchers [239, 192, 154, 12, 13, 142, 237,
14, 63, 109, 94, 199]. This is perhaps due to the fact that procedurally gen-
erated dungeons have been present in popular games since the 1970s and
onwards cf. [84, 232, 34].

2.4 related research fields 25

2.4 related research fields

The conducted research in this thesis have bearings on a sectional set of
disciplines, namely game design, computational intelligence and computa-
tional creativity but also computer graphics (visualisation and movie pro-
duction) and for specific uses as in scenario generation for scenario-based
training (cf. [136, 137]) and for generation of robot control software safety
tests cases [11].

2.5 concepts

This section of the thesis presents the algorithms and techniques used in
the thesis. This section begins by explaining Evolutionary Computation, It
will then go on to n-grams and end with Design Patterns.

2.5.1 Evolutionary Computation

Evolutionary computation (EC) is a subfield of Artificial Intelligence (AI)
inspired by the Darwinian principles and the mechanics of evolution. Gen-
erally speaking, EC methods belongs in the family of problem solvers called
trial-and-error [65]. As such they use a population of solution candidates in
a stochastic search to reach a (global optimum) solution for a problem.

EC methodologies are often used for complex optimisation problems, like
the timetabling of university classes [165, 39], and they have been shown to
successfully and efficiently find solutions in situations with large search
spaces with multimodal problems [65, 146, 125]. EC is of course not really
the exact same as natural evolution and therefore the terminology differs.
The EC problem solving metaphor in relation to natural evolution termi-
nology is shown in table 1. For instance, the fitness of an individual, is, in
essence, how high the quality of the solution is.

Evolutionary approaches in computation was proposed as early as 1948

by Turing [234] and followed by Bremermann [36] who in 1962 was able
to demonstrate experiments on optimisation with the aid of “evolution

26 background

Table 1: The basic evolutionary computing metaphor linking natural evolution to
problem solving [65]

Evolution Problem solving

Environment ←→ Problem

Individual ←→ Candidate solution

Fitness ←→ Quality

Figure 10: The general scheme of an evolutionary algorithm as a flowchart [65].

and recombination”. EC was further developed in the 1960s and the 1970s
with three different inovations; evolutionary programming [77], genetic al-
gorithm [99, 100] and evolution strategies [177, 183]. In the 1990s this was
followed by genetic programming [21, 120, 121].

Due to the four main directions of EC; evolutionary programming, ge-
netic algorithms, evolution strategies and genetic programming, there are
several different variations on EC but they share the following components;
a population of individuals in some environment with limited resources and
the competition of these resources cause a situation of natural selection. Since
EC is purely artificial, the competition of resources is not real but rather the

2.5 concepts 27

effect of ranking of the individuals and the selection of individuals. The
combination of these operators cause an improvement of the fitness in the
population. With the aid of a fitness function (quality function, objective
function or evaluation function), it is possible to evaluate the individuals
and rank them and send some of these individuals to the next generation.

Listing 1: The general scheme of an evolutionary algorithm in pseudocode [65]

1 BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1 SELECT parents;

6 2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

11 END

By applying recombination and/or mutation to the population, hopefully,
better candidates are created. Recombination is an operator applied to two
or more selected candidates (parents), producing one or more new candi-
dates (children) [65].

Mutation is another operator applied to a candidate which result in a new
candidate. Creating offspring and ranking them together with the ancestors
with the fitness function, in order to keep the best over a set of generations
will generate a suitable solution (a member with high enough quality or
the specified number of generations have passed). Eiben and Smith [65]
stress that two main forces forms the basis of evolutionary systems, namely;
variation operators (creates the necessary diversity in the population) and
selection (the force that increases the mean fitness of the members in the
population).

For the research done in this thesis; genetic algorithms are of particular
interest since several of the artefacts are based on the principal scheme of
listing 1 and is illustrated in figure 10.

28 background

2.5.1.1 Components and the principle of Evolutionary Algorithms

Eiben and Smith [65] explains the main components of an evolutionary
algorithm:

representation : In order to be able to solve the problem (or at least to
get a solution candidate) a translation and codification of a solution
in the problem domain (called a phenotype) must be made to the EA
(called a genotype). Representations are central for EC and are selected
to suit the problem at hand. A binary string or a string of symbols
may suit some problems. Other problems may need an array of real
numbers or a graph representation. For example, if the classic com-
putational Travelling Salesman Problem (TSP) was to be solved by
EC, it would perhaps be suitable to have the representation as a string
of symbols to represent the cities and the order of the sequence is how
it should be traversed. Suppose there are five cities to visit; Cities =
{A, B, C, D and E}. A possible solution sequence for the five cities
could then be Cities = {A, E, D, B and C} and the first city to visit is
A, then E, and then D, etc.

fitness function : Its role is to serve as an evaluation of, as well as rep-
resent, the requirements the population should comply to. As such, it
sets the basis for the actual selection of individuals in the population
by assigning a quality measure to genotypes. For the TSP the fitness
function would be the distance travelled to complete the sequence in
the possible solution Cities = {A, E, D, B and C}.

population : The population holds a set of possible solutions. It could be
viewed as a container for a defined number of individuals. In evolu-
tionary computational terms, it is not the individuals that change but
instead remain static and thus it is the population that improves.

parent selection : In essence, this is the strategy that differentiate by all
of the individuals in order to decide which ones of the individuals that
become the parents of the next generation. Overall, in EC, the parent
selection is usually based on picking individuals with higher quality

2.5 concepts 29

to create offspring. Sometimes, certain approaches allow individuals
with low quality to continue on to the next generation, by giving them
a small chance with the sole purpose to counter too greedy strategies
which may get stuck at a local optimum.

variation operators : The purpose of variation operators is to create
new individuals based on old individuals. The operators are either
unary (mutation) or n-ary (recombination). The mutation operator
is applied to an individual to create a small random and unbiased
change. The mutation operator is usually different in the different di-
rections of EC. Solving the TSP we could pick subsequences from one
parent and then add the other cities from the other parent.

In the genetic algorithm direction, a common mutation operator for
binary encodings, regard each bit and allows every bit to change ac-
cording to bitwise NOT with a small probability (see figure 12 for
an example where the third, fourth and eighth positions are selected
for mutation). The recombination operator is often called a crossover
operation, which is perhaps more literal to what the operator does,
namely crossing two parent genotypes into one or two offspring.

Both the mutation and recombination operator are stochastic. In the
case of the recombination operator the choices of what parts of the
parents and how this is done is dependent on random drawings [65].
As with the mutation operator, the recombination operator is different
in the different EC directions and is typically seen as the main search
operator in genetic algorithms but it is never used in evolutionary
programming [65]. In figure 11 the crossover happens at a single point
(after the fourth bit position).

survivor selection : In most cases in EC the population size remains
constant and therefore a selection strategy has to be applied to dis-
tinguish among the individuals based on their quality (fitness value).
In some approaches the concept of age is also applied giving the se-
lection strategy a focus on offspring and not only selecting survivors
based on fitness value.

30 background

Figure 11: An example of a crossover operation.

2.5.2 n-grams

In 1948, Shannon published his seminal work “A Mathematical Theory of
Communication” [194] which focuses on the problem of how to best encode
information with the purpose of transmitting it. In this work Shannon uses
probability theory as a method for measuring the uncertainty of a mes-
sage. While simultaneously inventing information theory, Shannon [194],
also uses n-gram-based approach to create a model of a natural language.

Later, Shannon [195], also used n-grams to statistically demonstrate the
average information carried by each letter of the English alphabet and to
show the upper and lower bounds of information entropy of English, which
allows for a statistical base for language analysis with use in data commu-

Figure 12: An example of a mutation operation [65]

2.5 concepts 31

Table 2: 3-gram probability values for an n-gram predictor [149]

..R ..L

LL 1
2

1
2

LR 3
5

2
5

RL 3
4

1
4

RR 0
2

2
2

nication and encryption.

A model of the probability distribution of n-letter (or words, etc.) se-
quences is called an n-gram model. Essentially, an n-gram model is defined
as a Markov chain of order n − 1 [180] where the probability of a symbol
depends only on the previous symbol. In principal, the modelling is based
the traversal of a known body of text (a corpus) where counting symbol
sequences gives the probability of their presence in the corpus. In the se-
quence (corpus) “LRRLRLLLRRLRLRR” where the symbol “L” means left
and “R” stands for right, a 3-gram model gives the probabilities for the next
symbol to be an “L” or an “R” as shown in table 2 [149].

An application for n-gram models are: action prediction, language anal-
ysis [149] and language identification [180]. Applying probabilities to iden-
tify the next symbol or word in a sequences is essential when the input is
noisy or ambiguous, like with speech recognition or handwriting recogni-
tion [112]. Jurafsky and Martin [112] exemplifies the use of prediction in
spelling correction with the phrase “Their are two midterms in this class”
where “Their” is a mistyped “There”. The bi-gram (an n-gram of size 2)
“There are” is much more likely to be correct and therefore a spellchecker
would be able to detect and correct such an error.

32 background

2.5.3 Design Patterns

Design patterns is a concept emanating from the idea that design solutions
can be described on a more abstract level so they can be re-used in similar
contexts. In 1977, the architect Christopher Alexander developed a language
of patterns, a large tome containing 253 patterns related to the construction
of the physical environment. The initiative aimed to empower individuals
to express their ability to design or participate in design processes with
the aid of a informal grammar. Design patterns was developed as part of a
movement focusing on understanding design methods (cf. [110]). The pat-
terns cover the problem area on a wide range from regions, via cities down
to furniture. The pattern language could be seen as a generative grammar
with two major components; “Each pattern describes a problem which oc-
curs over and over again in our environment, and then describes the core
solution to that problem, in such a way that you can use the solution a mil-
lion times over, without ever doing it the same way twice” [7]. Intrinsically,
a pattern has two components (problem and solution) but its usefulness is
not in a specific solution to a problem, but that a pattern is a general start-
ing point of a solution to a problem you are faced with.

The approach was later applied to computer software design in 1994,
when Gamma et al. [82] published a set of descriptions or solutions for how
to solve reoccurring problems in object-oriented design [82]. The solutions
are more structures compared to the ones described by Alexander and they
are more like templates that can be employed in different situations. For
instance, the Singleton pattern ensures that a class only has one instance
and a global access point to it. Gamma et al. [82] demonstrate this pattern
in C++ with an operation that allows access to the unique instance (imple-
mented as a static member function, see listing 2 for the class declaration).
Gamma et al. [82] introduced a set of sections of the pattern description;

pattern name and classification A name for the pattern that cap-
tures its essence. For the Singleton pattern it is to ensure that a class
only has one instance.

2.5 concepts 33

intent What the design pattern does, its rationale and what particular
design issue or problem it address. A Singleton provides a solution
to the situation of a class only have exactly one instance.

also known as Other known names of the pattern.

motivation A scenario that illustrates the problem and how the solution
solves the problem. The Singleton pattern addresses problems when
the software designer wishes to certify that there is only one-of-a-kind
resource, like only one file system but many drives or only one printer
spooler but many printers.

applicability In what situations the pattern can be applied and how
to identify these situations. The Singleton must have exactly one
instance of a class and it must be accessible from a well-known access
point.

structure A graphical representation of the classes in the pattern.

participants The classes and objects that takes part in pattern. Single-
ton is the only participant in this pattern but the Instance operation
is important. It may be responsible for creating the instance but not
necessarily.

collaborations A description of who the participants collaborate with.
Clients access a Singleton instance through its Instance operation.

consequences How does the pattern support its objectives, trade-offs
and results. Singleton has several benefits: controlled access to sole
instance, reduced name space, permits refinement of operations, per-
mits a variable number of instances if the design decides so and it is
more flexible than class operations [82].

implementation Practical hints and techniques that the programmer or
designer should know when trying to implement the pattern (see list-
ing 2).

34 background

sample code Small examples that illustrates the implementation in C++
or Smalltalk.

known uses Examples of the pattern in real systems in different domains.
Singleton could be used as metaclass (the class of a class) since each
metaclass has one instance.

related patterns Patterns that are related to this pattern, their differ-
ences and patterns that should be used with this pattern. Since Single-
ton is a creational pattern it is related to Abstract Factory, Builder

and Prototype.

Listing 2: The Singleton class declaration [82]

class Singleton {

public:

static Singleton* Instance();

4 protected:

Singleton();

private:

static Singleton* _instance;

}

2.5.4 Game Design Patterns

The use of design patterns to understand and design games was initially
suggested by Kreimeier [122] and later followed by Björk & Holopainen
who developed a large collection bordering on 300 patterns [30]. Related
and similar approaches to understand game design are the 400 rules proj-
ect [23] and the game ontology project [246].

A set of publications have explored game design patterns in less general
ways than Björk & Holopainen [30, 29] as they typically focus on a destinct
aspect like game sound design [8], or a specific game genre like First Per-
son Shooters [102] and Role-Playing Games [207, 64]. Applications of game

2.5 concepts 35

design patterns include teaching and communicating game design but also
direct design activities like brainstorming, fine-tuning of ideas or exploring
unused ideas. More academic purposes include comparing and identifying
differences between a game and remakes [40] or sequels [220]. Likewise, ex-
ploration of different, less central to core gameplay, play experiences such
as camaraderie [25] and pottering [133] in games can be done with the aid
of game design patterns.

As an example of game design patterns and rather fitting to the topic
of the thesis, Björk and Holopainen [30], have previously defined the Lev-
els pattern as: “A Level is a part of the game in which all player actions take
place until a certain goal has been reached or an end condition has been fulfilled.”
Björk and Holopainen [30] uses a set of sections to describe the pattern;
name, definition, description (including examples of their usage), using the
pattern (as a designer in a design situation), consequences (the effect of us-
ing the pattern in a game), relations (to other patterns), and references (to
related previous work).

Björk and Holopainen [30] have included hierarchies of patterns in their
pattern collection which denotes relations between different sets of patterns,
something that is similar to the concept of organising patterns in families
by Gamma et al. [82]. The Singelton is related to Prototype in such a
way that Prototype instances of a class only have a limited different com-
binations, like a limited set of templates, whereas a Singelton is a unique
instance. Likewise, areas in a game world that the player can perceive but
currently cannot enter (i.e. Inaccessible Areas), are related to Levels be-
cause they can be sections in a level that is temporarily blocked by locked
doors that can be opened by finding a key in another part of the Level. This
relation is commonly realised as part of the action adventure The Legend of
Zelda [160].

name A singel word or phrase describing the concept. In [30] aliases are
deliberately excluded to minimise the number of names that needs to
be remembered.

36 background

core definition A sentence that describes the core idea of the pattern.
Level is defined above.

general description A short description that is followed by a moti-
vation for the pattern. General properties and examples are also in-
cluded. For instance, in Asteroids [17] the player advances to the next
level if all asteroids have been shot. Higher levels become more diffi-
cult because the asteroids moves faster and increase in numbers. For
example, Levels can be differentiated if the theme changes from one
Level to the next Level.

using the pattern Common choices a designer is faced with when try-
ing to use the pattern.

consequences What consequences of gameplay that can appear when
the pattern occurs in the game. Levels lets the game designer to de-
limit the game world and its complexity.

relations Relations between the described pattern and other patterns.
Björk and Holopainen [30] uses five categories that identifies the re-
lations: instantiates, modulates, instantiated by, modulated by, and poten-
tially conflicting with.

references A list of related previous work that either inspired the pat-
terns creation or work that contain the main aspects of the pattern.
Levels are modulated by Save Points and Cut Scenes etc.

Another example is the Sniper Location pattern [102] which describe a
common First Person Shooter pattern where a player can attack other play-
ers with long-range weapons while remaining protected. Hullett and White-
head [102] used another component while describing the patterns: affor-
dances, which states what aspects of the pattern that can be varied by the
designer.

Bordering to design patterns in games as well as procedural content ge-
neration, is the approach of having a tool that consists of a set of scripts
that is modified by a user to model specific Non-Player Character game-
play situations in Role-playing games like the pattern catalogue proposed

notes 37

by McNaughton et al. [145] for the Aurora toolset and engine, used in the
game Neverwinter Nights [28]. This approach was followed and extended by
Onuczko et al. [164] and McNaughton et al. [144].

notes

1The term “digital games” will be used throughout the thesis to describe console games
and computer games. In regards to related and referenced work the thesis will use the original
term.

2The ball bouncing game on the Magnavox Odyssey and Tennis for Two [241] predates Atari’s
version of PONG but is to some extent less well known.

3An open world game is a type of game where the player can move freely in a virtual world
and is free to choose how or when to approach objectives.

4An MMO is a digital game with the ability to supporting hundreds or thousands of players
simultaneously.

5Or more commonly – console generations.
6The first generation was released in 1972 and ended in 1976 with the introduction of

exchangeable ROM-cartridges.
7Visual artist should be considered as a general term for project members concerned with

the task of designing visual artefacts for the digital game e. g. 3D-models, animations, user
interfaces, textures, etc.

8The term independent video games or “indie” games is typically games that are developed
by individuals or small teams without the (financial) support of a game publisher.

9In [188] the term “algorithmic” is used instead of “automatic” (generation).
10The PCG system fulfils the role of the material.

3R E S E A R C H F O C U S

The important thing is not to stop questioning.
Curiosity has its own reason for existing.

— Albert Einstein (In LIFE magazine, 2 May 1955)

This section of the thesis presents the research from the perspective of a
set of research questions and the limitations of the research.

3.1 research questions

The objective of this thesis is to explore, to understand and to show how
digital game content can be generated in relation to pre-existing content
with the aid of a design method called design patterns. Apart from the
design-time (offline generation) it is valuable to explore how this can be
done during run-time (online generation). Related to this is the quality as-
pect of the generated content, including that the game content is generated
following a certain style. In addition to this is the evaluation of content. The
research uses two application domains: platform levels and dungeons (see
section 2.3) and the problem domain is the game industry (see section 2.1).
The main research question (MRQ) motivated and generated a set of sub-
questions (RQ) during the research process. We formulate the main research
question as follows:

39

40 research focus

• MRQ: How can design patterns be used for Procedural Content Gene-
ration?

In order to be able to answer the following research questions and to create
PCG systems that address the challenge, it is crucial to develop and es-
tablish knowledge that bridges the gap between design patterns and PCG.
Design patterns have previously been used to describe and communicate
game design on a fairly high abstraction level whereas PCG systems typi-
cally exist on a lower and more computational centered level. In order to
support this, a detailed analysis of existing game content have to be per-
formed. During the content analysis the possibilities of design patterns (as
an analytical tool) will be understood.

Details are provided by examples and specific instantiations of game de-
sign. These game design instantiations are not particularly useful for re-
alisation and implementation as software since they are explicit instances
and therefore not fulfilling a common PCG requirement, namely, variation.
However, given the practical use of design patterns in object-oriented pro-
gramming and the problem-solution descriptions design patterns have, it
is possible to view them as a useful tool for game and level designers dur-
ing the design process when the designers solve the problems of designing
levels.

• RQ I: How can particular design styles be expressed in a pattern-
based PCG system?

The purpose of generating a design style, or rather, more specifically to fol-
low a particular school of design thinking or to follow a specific designer’s
recognised style is especially useful in a situation of downscaling a game de-
velopment project when design knowledge is available, but there is limited
access to actual human designers, who can provide new content. In PCG,
representing style, refers to activity of defining a generative model that fol-
lows a particular designer’s recognised style or a particular school of design
thinking. One motivation for the research question is to address some of the
suggested long-term goals and research challenges for PCG [229]. In this re-

3.2 research limitations 41

search we addressed two of the research challenges, Representing Style and
General Content Generators (see section 2.2).

• RQ II: How can pattern-based PCG systems be evaluated?

PCG systems are by its nature generative systems and as such the amount
of content they can generate are (often) limitless. The usefulness of a PCG
system is based on the different qualities of the generated content. The
development of PCG systems often incorporates some kind of exploration
and fine tuning of parameters used in the system and thus it would be
useful to quickly be able to evaluate levels without incorporating playtests
after every minor change, but instead focus the effort of costly user tests
at predetermined moments or major changes. It is often counterproductive
to expose end users to incorrect, boring or repetitive content since it may
affect sales.

• RQ III: How can variation be achieved in a pattern-based PCG system
that retains a certain style or similarity with previous design?

The construction of a PCG system with the goal to maintain a certain design
style face the possibility that the solution space (the output) is limited in
variation and therefore risk a state of player boredom.

• RQ IV: How can level progression (e.g. pacing, structure and chal-
lenges) be implemented in a pattern-based PCG system while still
incorporating style and variation of game content?

Digital game content is usually constructed in such a way that a certain
order of its consumption is intended, e.g. a certain order of challenges, re-
wards, enemies, etc. is particularly interesting for a PCG system to be able
to generate in order to fulfil style and variation.

3.2 research limitations

The thesis focus on the technical challenges and does not consider the dif-
ferent aspects of organisational and business issues of game developers like

42 research focus

particular needs of game and level designers while interacting with the PCG
systems (e.g. graphical user interface, playtest logging, etc.). Therefore we
have not considered the detailed use of a PCG system in a company setting.
We have limited us to see the suggested process and artefacts be used in a
content pipeline within a game company in the following roles; tool, mate-
rial, designer and expert that Khaled et al [117] have suggested. Finally, the
scope of the thesis is limited to the use of PCG in digital games. It would
be interesting to adopt the research presented here with an interface sup-
porting the designers work with content similar to what has been done in
research concerning Mixed-initiative PCG systems c.f. [132, 208].

4M E T H O D O L O G Y

Everyone designs who devises courses of action aimed
at changing existing situations into preferred ones.

— Herbert Simon (In The Sciences of the Artificial)

This section of the thesis presents the methodological considerations, and
motivations for the study, as well as the research framework, concluding
with research design choices made for this work in relation to the research
questions (see section 3.1).

4.1 methodological consideration and motivation

The research put forth in this thesis is essentially belonging in design sci-
ence to Information Technology. The design science paradigm has its back-
ground in engineering and the sciences of the artificial [196, 97]. As such,
it focuses on developing new IT artifacts [97] and addresses design tasks
faced by practitioners [134] in a domain. It was chosen as the primary re-
search strategy due to its focus on applied research where problems are
solved with the aid of artefacts. In essence, this thesis has emanated a set of
artefacts with the purpose of solving practical problems in the digital game
industry by the means of Procedural Content Generation.

43

44 methodology

4.2 the design science research framework

March and Smith [134] suggested a research framework to strengthen prior
frameworks in information technology [92, 108, 138] which were mainly fo-
cusing on variables arguing that these approaches “fails to provide direction
for choosing important interactions to study” [240] as well as they fail to
describe the large body of design science research done previously in IT.
Furthermore, it does not account for the matter that IT research is focusing
on “artificial phenomena operating for a purpose within an environment”
and its task together with IT’s adaptive nature and that it therefore is a sub-
ject to change [134].

The suggested framework by March and Smith has a focal point on
research activities and research outputs (see section 4.2.2 and 4.2.3). The re-
search activities are based on broad types of design science and natural sci-
ence activities and include: build, evaluate, theorise and justify. Moreover,
the research outputs consist of; constructs, models, methods and instantia-
tions [97]. Theorising about the artefacts and trying to justify these theories
is connected to natural science whereas building and evaluating the arte-
facts are tied to design science.

4.2.1 Environment and Knowledge base

Since March and Smith put forth their framework, there has been sugges-
tions providing refinement and extensions to it. One of the most influential
extensions is the framework suggested by Hevner et al. [97]. It is closer cou-
pled with the behavioural science paradigm, which seeks to develop and
verify theories that explains human and organisational behaviour. It is fur-
ther tied to design science by adopting its goal of extending the boundaries
of human and organisational capabilities with innovative artefacts. Most
importantly for the research presented in this thesis is the framework’s def-
inition of environment and knowledge base since they provide the input for
our research.

4.2 the design science research framework 45

The environment defines the problem space [196, 97] where the phenom-
ena of research interest exists. In the area of Information Technology, it usu-
ally covers people, organisations and their existing or planned technologies.
Hevner et al. [97] argues that the goals, tasks, problems and opportunities
that makes up business needs in the environment define research problems
that are relevant.

The knowledge base makes up the “raw materials” for Information Tech-
nology research by providing two major components of research; founda-
tions and methodologies [97]. The foundations are the stepping stone for
the research as it includes theories, frameworks, instruments, constructs, models,
methods and instantiations. While the foundations works as the baseline and
background for the research, the methodologies provides rigour when ap-
plied appropriately. The methodologies are made up by data collection, data
analysis, techniques, formalisms, measures and validation criteria. Given
that Information Technology research is based in both behavioural science
and design science, the methodologies stretch from empirical data collec-
tion and analysis to computational and mathematical methods.

The environment as well as the business needs for the domain have been
described in the introduction and background chapters (see chapter 1 and
section 2.1). The knowledge base consists of analysis and/or modelling de-
sign patterns in games (see section 2.5.3), algorithms (see section 2.5) and
existing PCG knowledge (see section 2.2). The purpose of the analysis and
modelling design patterns was to understand specific game content and to
implement algorithms that generate content coherent to the patterns.

4.2.2 Research output

During the Information Technology research process a set of artefacts are
built and evaluated [97]. These research artefacts consists of constructs, mod-
els, methods and instantiations and act as outputs [134]. The building of the

46 methodology

artefact includes determining functionality and architecture as well as actu-
ally creating the artefact with the use of suitable theory [170].

constructs form the vocabulary of the domain and they constitute a con-
ceptualisation which is used to describe problems within the domain
or to specify their solutions. As such they make up the specialised
knowledge in a discipline in the form of both formalised (entities,
attributes, relationships, identifiers, constraints) and informal knowl-
edge (consensus, participation, satisfaction) [134].

model artefacts could simply be viewed as descriptions [134] of how thi-
ngs are. In the natural sciences the model term is often synonymous
with theory and a common way to propose a phenomena to be under-
stood in terms of concepts and the relationships between the concepts.
In the framework proposed by March and Smith [134] the concern of
model is utility and not truth11. March and Smith [134] exemplifies
the aspect of utility with a semantic data model which is valuable
when used for designing an information system. A Model is a set of
statements that express the relationships between constructs. In de-
sign activities, for instance, models may form problem and solution
statements.

method artefacts are used to solve a task and they could both be a guide-
line or an algorithm, and they are based on underlying constructs
founded in the solution space [134]. If the method is, for example,
an algorithm it would typically be based in a language and/or using
a model as an input, perhaps to translate or transform into another
model or representation while solving the problem. As such, the utili-
sation of a method may affect and influence constructs and models for
a task. March and Smith [134] exemplifies this with the development
of a model that uses other constructs, is a design task in itself, that
requires powerful methods and techniques.

instantiation artefacts are a realisation of an artefact in its environ-
ment [134]. The instantiation are typically some kind of information

4.2 the design science research framework 47

system or tool and may therefore also precede other artefacts and
not just operationalise previously created artefacts. It is quite possible
that a research activity begins with the realisation of one instantiation
with the aid of models, methods, and/or constructs and later initiate
other models, methods, constructs and instantiations. Newell and Si-
mon [155] sees computer science as “an empirical discipline” and that
each “new machine that is built is an experiment” which is observed
and analysed.

4.2.3 Research activities

March and Smith [134] argues that research activities in design science are
twofold: build and evaluate. In the process of building an artefact it is
demonstrated that such an artefact can be built. The construction of the
artefact is followed by the other activity: evaluate, which refers to putting
forth criteria and assess the artefact’s performance against these. In essence,
the questions are: does it work and how well does it work. The second
question may need development of metrics and the measuring of the arte-
fact according to those metrics. From this point of the process it is possible
to theorise and justify its finding with the aid of mathematical justifications
or with the aid of data collection and analysis [134].

Peffers et al. [170] emphasises that evaluation methods can take many
forms due to the problem venue and the artefact. Examples of possible
evaluation methods are: a comparison between the artefact’s functionality
and the solution objectives, measuring performance, doing satisfaction sur-
veys, elicit client feedback, and to execute simulations [170]. Hevner et al.
[97] on the other hand, suggests five design evaluation methods, namely:
experimental, analytical, observational, testing, and descriptive. However,
Peffers et al. [170] methods could be mapped to fit into the ones mentioned
by Hevner et al. [97]. For example, simulations from Peffers et al. [170] are
joined by controlled experiment as a method in the experimental method
suggested by Hevner et al. [97].

48 methodology

4.3 research process

The research process consisted of a set of activities that produced research
output in the form of artefacts. In figure 13, squares represent model arte-
facts, circles represent instantiation artefacts and octagons represent (ana-
lytical) evaluations together with the icon of the two human figures which
also represents (experimental) evaluations. The arrows in the model repre-
sent how artefacts affected the construction other artefacts.

The research process started out with an initial attempt to answer the
main RQ with literature studies of game design patterns and with the de-
velopment of a model artefact covering the level design patterns of the plat-
form game SMB [158] (see paper i).

Closely tied to the model artefact designed in paper i is the two instantia-
tion artefacts created for paper ii since they both are based on the patterns
presented in it. The first instantiation could be described as a constructive
level generator which had a set of patterns which could be modified by pa-
rameters indicating the amount of enemies and rewards as well as different
types of blocks. The second instantiation was implemented as a search-based
level generator that searches through the solution space after sequences of
level content (represented as integers) that makes up instances of patterns
present in the original levels of SMB. Together with the two different instan-
tiation artefacts, a minor user study was conducted (experimental evalua-
tion).

For the next phase, two forms of evaluations were performed [97]; ex-
perimental (three controlled experiments) and analytical (dynamic analysis:
expressive range [202]). The experiments sought out to understand the fit-
ness landscapes of the search-based approach (initially tried as one of the
approaches in paper ii with the aid of three different fitness-functions. The
fitness-functions were constructed to; 1) certify that every pattern could be
found, 2) explore how common the different patterns were and 3) explore

4.3 research process 49

how different weights could affect the patterns presence in the solution
space.

Figure 13: An illustration of the relations of the different artefacts and evaluations.

paper i The work in this thesis started out with the analysis of the level
design of Super Mario Bros. [158] and design the model artefact as a
collection of game design patterns for platform games.

The paper relates to the RQ I and RQ III.

paper ii Closely tied to the model artefact designed in Paper i is the two in-
stantiation artefacts created for this paper since they both are based on
the patterns presented in it. The first instantiation could be described
as a constructive level generator which had a set of patterns which
could be modified by parameters indicating the amount of enemies

50 methodology

and rewards as well as different types of blocks. The second instantia-
tion was implemented as a search-based level generator that search
through the solution space after sequences of level content (repre-
sented as integers) that makes up instances of patterns present in the
original levels of SMB. Combined to the two different instantiation
artefacts a small user study was conducted (experimental evaluation).

The paper relates to the (RQ II and) RQ III.

paper iii For the next phase, two types of evaluations were completed [97]
experimental (three controlled experiments) and analytical (dynamic
analysis: expressive range [202]). The experiments sought out to un-
derstand the fitness landscapes of the search-based approach (initially
tried as one of the approaches in Paper ii with the aid of three dif-
ferent fitness-functions. The fitness-functions were constructed to; 1)
certify that every pattern could be found, 2) explore how common the
different patterns were and 3) explore how different weights could
affect the patterns presence in the solution space.

The paper relates to the RQ III.

paper iv In this paper, the search-based approach in fitness-function 3

in Paper iii was extended into three abstraction layers; 1) micro-, 2)
meso- and 3) macro-patterns. Abstraction layer 1 are vertical slices of
original content, layer 2 fully playable sequences and layer 3 following
the same pattern order as original levels have.

The paper relates to the RQ IV.

paper v At this point the research the concept of expressive range [202]
initiated a more rigorous exploration of evaluation of PCG and met-
rics. 7 generators and the original levels of SMB were explored with
six different metrics.

The paper relates to the RQ II.

paper vi Extending the approach of using sequences as how content is
constructed (paper ii, paper iii and paper iv) together with the re-

4.3 research process 51

search challenge of Representing Style [229] and using the actual in-
stances of design patterns in SMB.

paper vii In order to expand the approach with design patterns as a mean
to understand and generate game content, a model artefact founded
on an empirical basis, namely the dungeons in several RPGs, was
developed for this paper.

The paper relates to the RQ III and RQ IV.

paper viii With regard to a deeper understanding of the instantiation arte-
facts created and thus concluding the main study, a user evaluation
was conducted (experimental evaluation) by comparing the player ex-
perience of a set of generators.

The paper relates to the (RQ II).

4.3.1 Literature studies

The literature studies performed for this thesis are based on traditional nar-
rative reviews executed through database searches and snowballing (for-
ward and backward). In order to counter weaknesses in the chosen key-
words and defined search phrases the findings were correlated with read-
ing abstracts of publications at specific conferences and workshops were
research in game design patterns or procedural content generation are pub-
lished12.

4.3.2 Evaluation

Hevner et al. [97] suggest a set of evaluation methods; observational, ana-
lytical, experimental, testing, descriptive. In the thesis we have focused on
creating certain artefacts: model artefacts, and instantiation artefacts. In this
thesis we have focused on analytical and experimental evaluations based on
the nature of the artefacts [170].

52 notes

notes

11Regarding to this it should be noted that March and Smith [134] states that “the concern
of theories is truth”.

12Conferences: Digital Games Research Association, SIGCHI Conference on Human Factors
in Computing Systems and CHI Play, Foundations of Digital Games, IEEE Conference on
Computational Intelligence and Games, AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment, Genetic and Evolutionary Computation Conference (GECCO)
and Evostar. Workshops: 1-6th Workshops on Procedural Content Generation and 1-4th Work-
shops on Design Patterns in Games. Journals: Gamestudies, Eludamos, Games and Culture,
Simulation & Gaming, IEEE Transactions on Computational Intelligence and AI in Games

5C O N T R I B U T I O N S

This chapter summaries the research contribution of the thesis. The chap-
ter starts by presenting the key points and contribution for each research
question (RQ) in numerical order before continuing with the main research
question (MRQ) and concluding with a summary of the research constructs
the thesis has generated.

Table 3: Relationships between research questions (RQ) and papers

RQ Papers

MRQ i, ii, iii, iv, v, vi, vii, viii

RQ I i, vii

RQ II ii, v, viii

RQ III i, ii, iii, vi

RQ IV iv, vi, vii

rq i : how can particular design styles be expressed in a pat-
tern-based pcg system?

The contribution for this research question is covered by two design pattern
collections (model artefacts) in paper i and vii. Design patterns were chosen
as a basis for the model artefacts due to the two component (problem and
solution) description it uses, as well as its prior use as description of design
in the context of game design. The design pattern approach gives the ability
to model more than one solution to reoccurring (design) problems. In order
to make the design patterns suit a PCG system with the goal to generate
levels, a lower level of abstraction than commonly used were chosen.

53

54 contributions

All in all, the first design pattern collection consists of 23 patterns grou-
ped into 5 families and was modelled for the game Super Mario Bros. [158].
The collection allowed us to create a PCG system with a likeness to the
specific style of the original levels in paper ii, iii, and iv and it made the
pruning of the corpus in paper vi possible. Other researchers have built on
this research, see e.g. Thompson [220] where the model was used to analyse
game sequels with regard to the original game in order to establish whether
the game series had innovated between the games.

In addition, the second collection (the design pattern collection in paper

vii) was developed to allow a PCG system to generate levels that express
the four different dungeon styles of the different games analysed in paper
vii.

rq ii : how can pattern-based pcg systems be evaluated?

Evaluation is a recurring research problem in the area of PCG due to the
indirect nature of the use of the designed artefact. In effect, a PCG system
is commonly evaluated through its output. Since generators’ main function-
ality is to generate game content and in potentially infinite amounts, this is
a problem in self. How do you evaluate an artefact that generates artefacts?
The contribution for this research question is the suggested metrics in paper
v, its relations to other metrics in the same paper and to some extent the
applied evaluation approaches in papers ii, v and viii.

In paper ii three different approaches were evaluated with player tests.
The players was divided into three groups and played each generated le-
vel in a different order to limit bias of previous played levels. The players’
experience was evaluated with a survey, where the specific levels were eval-
uated on a six value scale measuring; 1) Boring-Fun, 2) Not similar-Similar
(to the original SMB) and 3) Easy-Hard. Whereas the results shows limited
differences between the different approaches; the search-based approach in
paper ii was deemed to be more fun than the others but also a bit easier to
complete than the constructive approach in paper i.

contributions 55

In paper v a large-sale comparative evaluation of level generators was
conducted. In total, 7 generators and the original levels were evaluated with
the help of 6 expressivity metrics.

In paper viii a comparative user evaluation was carried out with 32 users
pair-wise comparing levels from five different generators, two generators
developed in the scope of the thesis (papers iv, vi) and three generators
previously evaluated with expressivity metrics (paper v). Overall, the n-
gram generator (paper vi) was seen as most Mario-like and the Multi-level
Level generator (paper iv) was seen as generating well made levels.

rq iii : how can variation be achieved in a pattern-based pcg-
system that retains a certain style or similarity with previ-
ous design?

In relation to this research question a set of generators were implemented
(instantiation artefacts) and reported in papers i, ii, iii, vi and vi. The four
different artefacts used related but different approaches as follows; in paper
i, a constructive parameter generator was implemented, in paper ii and iii

search-based approaches were used, and finally in paper vi a learning based
approached was used.

The initial approach mentioned in paper i consisted of a PCG level gener-
ator which used predefined sequences of level design patterns (see paper i)
taken from SMB [158] which could be modified with parameters allowing
enemies and rewards to be present and the difficulty for a level was based
on the presence of enemies and limitations of rewards. However, the vari-
ation this approach allowed was limited and consequently a search-based
approach was tried in paper ii with the intent of seeing variation as an
effect of the traversal of the solution space.

In the first version of the search-based approach, the first level of the orig-
inal game [158] was divided into vertical slices and each slice was given
an integer value. The fitness function assigned the fitness value to a mem-
ber based on the presence of predefined sequences taken from SMB [158]

56 contributions

(mainly the first level). The specific fitness values for each sequence were
decided based on repeated test runs and fine tuned manually.

The second search-based approach, followed the same design principle
but included more predefined sequences and was more extensively evalu-
ated with three different versions of fitness functions. In order to under-
stand the change in the output, due to the use of the different fitness func-
tions, the concept of expressive range [202] was used to analytically evaluate
the artefact. One outcome of this was the ability to understand how the
different patterns appeared in the solution space.

The learning-based approach is a a type of probabilistic language model
called n-gram model. The n-gram model is based on a corpus of level con-
tent which is the basis for the conditional probability tables and put to-
gether sequences from these tables to construct new sequences. In paper
vi, levels were generated with n-grams with n = (1, 2, 3) were only n = 3

worked well whereas n = 1 generated levels with broken content and n = 2

generated correct but un-characteristic content for the original game. The
approach is fast enough for online generation and generates levels in the
same style as in the original game but is very dependent of the predefined
corpus. Uncommon symbols leads to limited variation. One negative effect
of using the original content, as it is, was that long sequences of standard
ground were common since they appear twice in every original level (in the
beginning and the end). However, after pruning down these long sequences
to more common length sequences the generated output became similar to
the original content style.

The first and second implementation (constructs) [134, 97] used an exper-
imental evaluation [97] in paper ii. The third and fourth implementation
(constructs) were evaluated with experimental and analytical evaluations in
paper iii and vi.

contributions 57

rq iv : how can level progression (i .e . pacing , structure and

challenges) be implemented in a pattern-based pcg system

while still incorporating style and variation of game con-
tent?

The implementations (instantiation artefacts) in paper iv and vi represent
two different approaches; the prior is utilising a search-based bottom-up
approach and the latter one is using a type of probabilistic language model
called n-gram model. The search-based bottom-up approach uses a com-
mon evolutionary search strategy but works in a two step fashion, were
members of the population are ranked by 1) presence of pre-defined level
design patterns (more patterns are better, more complex patterns are better)
and 2) the order of the pre-defined level design patterns (the more the order
of the patterns match original game levels the better).

mrq : how can design patterns be used for procedural con-
tent generation?

Summing up, the studies related to the main research question resulted in
two design pattern collections (model artefacts), a set of different implementa-
tions (instantiation artefacts) and their evaluations (considering the pattern-
based metrics belonging in method artefacts). All in all the main research
question includes the following constructs [134, 97]:

• Level design pattern collection for the seminal platform game Super
Mario Bros. (paper i)

• Level design pattern collection for four types of dungeons (paper vii)

• Constructive level generator (paper ii)

• Search-based level generator (paper ii, iii)

• Multi-level search-based level generator (paper iv)

• Learning-based level generator (paper vi)

58 contributions

• Pattern-based metrics (paper v)

The evaluations of the implementations were both experimental (paper ii)
and analytical evaluations (paper iii, iv, vi). A comparative user evaluation
was also conducted (paper viii).

6C O N C L U S I O N S A N D F U T U R E W O R K

The thesis has described conceptual and applied research in game design
patterns but foremost in the area of Procedural Content Generation. It has
focused to explore the possibilities of generating game content in a realistic
setting where existing content artefacts set the direction for further gener-
ated content. In order to deepen the knowledge of PCG artefacts in relation
to possible end-users, some empirical research has been conducted and in-
cluded in the thesis.

The performed studies have shown that the use of game design patterns
and pattern-based PCG is a promising approach to understand and to gen-
erate game content. The use of game design patterns have been applied on a
different level than previously. Moreover, it has been demonstrated how de-
sign patterns instances at different levels: micro-, meso- and macro-patterns
can be used for generation of game content. Closely tied to this is the use of
patterns together with different approaches to pattern-based PCG. Finally,
the empirical studies show that the proposed methods perform better than
existing PCG methods in many respects.

A possible development for the pattern-based PCG approach is to explore
other methodologies for generation. If it is possible to define a pattern as a
part of a larger model it may be possible to continue the research in both
a more formal way and a semi-formal way and thus other generation ap-
proaches are available to use and explore.

On the more formal side of generation methodologies, formal languages,
plans and logic or constraint satisfaction may be fruitful to combine with
the design pattern approach. A semi-formal way would be to describe a
possible solution to a pattern as a series of game actions and this descrip-

59

60 conclusions and future work

tion could then be mapped to content (similar to micro-slices) that match
these game actions. The semi-formal way may be similar to the situation of
using a program language to describe the solution of a pattern, bytecode
is then generated from that description which could be executed by a soft-
ware interpreter i.e. the generator itself.

It would be interesting to see how Machine learning could be applied
to analyse content from a pattern-based perspective, possibly with the use
of autoencoders and Recurrent neural networks.

In the area of game design patterns, a natural step would be to conduct
a series of analyses of game content in different game genres or game do-
mains. This would then both validate the approach of using low-level game
design patterns to model and understand game content as well as extending
the research in game design patterns. In regard to this, a set of level design
patterns covering the different domains would also be a possible future con-
tribution. Perhaps it would be fruitful to investigate how patterns could be
used in different genres, or in relation to PCG, look into how patterns can
reoccur in different games.

Another possible extension to the study presented in the thesis could be
to apply the approach to generate different kinds of content like racetracks
and RTS maps, not just levels and dungeons. In fact, applying the approach
to content that is not connected to game space could also be beneficial. One
such endeavour could be to pursue generation of quests and missions in
RPGs with a pattern-based approach.

Part II

PA P E R S

7PA P E R 1 – PAT T E R N S A N D P R O C E D U R A L C O N T E N T
G E N E R AT I O N

Steve Dahlskog and Julian Togelius

abstract

Procedural content generation and design patterns could potentially be
combined in several different ways in game design. This paper discusses
how to combine the two, using automatic platform game level design as an
example. The paper also present work towards a pattern-based level gener-
ator for Super Mario Bros. (SMB), which is based on an analysis of the levels
of the original SMB game where we found 23 different patterns.

published in

Proceedings of the First Workshop on Design Patterns in Games
ACM c©2012

doi:10.1145/2427116.2427117

63

PAT T E R N S A N D P R O C E D U R A L C O N T E N T
G E N E R AT I O N

7.1 introduction

This paper discusses the relation between procedural content generation
(PCG) and design patterns in games, and presents work-in-progress on a
design pattern-based level generator for Super Mario Bros. (SMB). Procedu-
ral content generation in digital games refers to the automated or semi-
automated creation of game content using algorithms. Design patterns are
a way of structuring design and the design process into recurring elements.
This way of thinking originated in architecture, has had major impact on
software development and has recently been applied to game design.

In the paper, we will first discuss procedural content generation and in
particular its role in providing variation in games. We will then discuss de-
sign patterns, and how they can (and have been) used for PCG. We then
describe ongoing work with identifying and describing level design pat-
terns in SMB, and building a level generator based on these patterns.

7.1.1 Procedural content generation

In the digital game industry the PCG has successfully been used for the
creation of variations of content to enable replay of a digital game. The
types of game content that have been generated range from game worlds,
levels and items to ornamental decoration. Examples of generation of com-
plete game worlds include Terraria [175] and Civilization [147]. Diablo [34],
Borderlands [90] and the SpeedTree [105] middleware are examples of genera-
tion of levels, items and decoration, respectively. An interesting example of
PCG being used as a form of data compression is the space trading game
Elite [3] where David Braben and Ian Bell succeeded to squeeze in 8 galax-

65

66 paper 1 – patterns and procedural content generation

ies with 256 stars each into the limited (22 kB) memory capacity of the BBC
Microcomputer with the help of pseudo-random numbers [214].

7.1.2 Structures, noise and meaning

Games are in many aspects a combination of designed structures. Rules
govern the game’s use in the play process in a way that creates meaning to
players by allowing or disallowing actions. Levels guide the player through
the game world, and sometimes, game space as well, because of its way
of structuring challenges and rewards in the game space. The game’s story
builds meaning to the actions of non-player characters (NPCs) and other
entities populating the game world and together with quests, the story
provide purpose to the challenges the player is presented with. Thus we
conclude that structures in games are fundamentally entities that are inter-
connected with each other by relationships in a stable and consistent matter
for a single game. They should also be observable and recognisable from
the user’s perspective, either for the player character (PC), on the player’s
experience level or beyond the game, like game genres and themes. It is
from the different structures we define meaning and consistency in abstract
things as digital games.

“Structure (in [...] games) operates much like context, and participates in
the meaning-making process. By ordering the elements of a system in very
particular ways, structure works to create meaning.” [181]

Typically the designed structure is a functional one if helps to create
meaning for the player. By analysing the structures in games we can find
the reason to why a certain game makes meaning in a certain way. Digital
games are with few exceptions (e.g. Dark Room Sex Game [57]) relaying on
its ability to convey information on the game state through visual output. In
action games, more often than not, the player needs to scan, interpret and
assess the information of the game state at high speed. The assessment of
the game state allows the player to interact with the game. In design practice
the user’s ability to act is conveyed through affordances and the user’s
inability to act is conveyed through constraints [162]. In order to be able to

7.1 introduction 67

procedurally generate suitable content for a digital game the algorithm has
to be able to produce output that is meaningful to the player. Unless the
player is able to understand the output’s meaning it will be experienced as
noise or make the player chose a less advantageous or perhaps even make
the player fail.

In the process of game development the meaning and structure is ex-
pressed in the content the game designer and level designer provides. The
game designer provides the development team with the overall picture of
how the game should function. “Level designers use a toolkit or ‘level edi-
tor’ to develop new missions, scenarios, or quests for the players. They lay
out the components that appear on the level or map and work closely with
the game designer to make these fit into the overall theme of the game.” [78].
However, this job is not an easy one because for some “Level design is an
art...” [78]. We believe that a helpful tool like PCG should be configured
in such a way that the meaning and theme of the game and of its content
is conveyed through it. The content in a game is not just randomised and
thrown out pieces but rather carefully crafted and well placed pieces. If a
platform is unreachable in a platform game it has to have a purpose other
than being there for the player character to walk on. It is not hard to imag-
ine the frustration of a player trying to reach a reward that is out of reach.
Level design is perhaps a form of art because of the balance between pro-
viding challenges and rewards. A challenge that is too simple or too hard
makes the player bored or frustrated. The essence is to provide the content
in a way that a player can rise up to challenges and barely make them. In
state-of-the-art game development this is solved in the painstaking process
of play-testing and iterative design [78]. It would therefore be interesting to
try to utilise previous play-testing efforts and a possible way of doing this
is to be able to read a previous level design and generate new content from
this in such a way that the meaning of the content is not lost but still new.

68 paper 1 – patterns and procedural content generation

7.1.3 A little less randomization, a little more variation, please

In a previously proposed taxonomy for PCG [228], the question of the “right
amount of variation” in relation to different runs of an algorithm. This poses
two questions concerning what the “right amount” of variation consists of,
namely; 1) is the same amount of variation desired across all content types
and 2) how much, and what type of, variation does the game designer
want? It is very plausible that the game (or game mode) itself is in some
way dictating how much the right amount of variation due to its design.
Considering the job of the level designer there is a risk that the game be-
comes too varied so that the overall theme of the game gets lost or the
meaning or structure of the game confuses the player. However, the aim is
to create an enjoyable experience for the player. In the game industry this
is achieved by carefully crafting the game and its content in relation to the
play tests that are performed on invited players of the right target group.
In PCG terms, randomisation is necessary but not sufficient for automatic
level design purposes, as the output of the generator must be controlled in
order to fit with the meaning and structure of the game.

7.2 design patterns

In the seventies, the architect Christopher Alexander developed a language
of patterns. The intent was to allow individuals to express their ability to de-
sign with the aid of a informal grammar. “Each pattern describes a problem
which occurs over and over again in our environment, and then describes
the core solution to that problem, in such a way that you can use the so-
lution a million times over, without ever doing it the same way twice” [7].
In essence the pattern has two components (problem and solution) but the
value lies not in the specific solution but in the generalisation of a solution
space. This way of thinking was brought into computer software design
in 1994, when Erich Gamma, Richard Helm, Ralph Johnson and John Vlis-
sides published a set of descriptions or solutions for how to solve common
and recurring problems in object-oriented design. The solutions are not a

7.2 design patterns 69

finished design per se but instead templates that can be used in many dif-
ferent situations [82].

7.2.1 Design patterns in games

In games, design patterns can be seen as providing answers to problems
faced by the game and/or level designer. However, we can also see each
pattern as a problem posed by the designer to the player. We view the con-
tent in a level as challenges or problems the player must find a solution in
order to continue the progression through the game. The idea of automat-
ing the construction of problems with a given solution is a strategy to avoid
the limitations of constraint checking and thus allowing content to be pro-
duced without creating impassable obstacles for the player. Furthermore, if
we use previously play-tested problems we can with some certainty reuse
problems that are fitting different skill sets and skill levels and thus provide
more appropriate content for particular players or player types.

The seminal work of Björk and Holopainen introduced design patterns
to game design, and provides the foundations for the contemporary discus-
sion about the topic [30]. The book describes hundreds of design patterns,
at different levels of abstraction and with reference to different game gen-
res and tasks of game design. In this paper we will focus on patterns in the
design of game levels (and similar spatial designs, e.g. maps and tracks) as
opposed to e.g. patterns in game user interface design or rewards.

Hullett recently analysed levels of a common first-person shooter (FPS)
game in order to find recurring design patterns that had an impact on game-
play [102]. The patterns he found include arenas, sniper positions and gal-
leries, commonly seen in many FPS games.

The work that is most closely related to our current concern is the work
already done on design patterns in platform games. Smith et al. [203] anal-
ysed the design of platform game levels, and later devised the Tanagra
mixed-initiative level generator [208]. Tanagra uses a constraint solver to
generate level geometry in interaction with a human designer. The geome-
try is generated according to a number of patterns. These patterns occur at

70 paper 1 – patterns and procedural content generation

two different levels, the single-beat (micro) level where patterns such as the
“gap pattern” and “spring pattern” can be found, and at a slightly higher
level, where patterns such as “valley” and “mesa” are composed of three
micro-patterns each. These patterns are implemented with some flexibility,
as the constraint solver can decide to stretch them to some extent to fit in
the overall structure of the level.

Peter Mawhorter [139] describes a level generator for Super Mario Bros
based on “occupancy-regulated extension” (ORE). The generator works by
connecting a number of small level chunks like pieces of a puzzle. ORE
could be seen as a compositional approach to implementing design patterns
in procedural level generation. However, the description of ORE which can
be found in the literature only allows for small and static non-parameterised
level chunks.

7.3 combining pcg and design patterns

PCG and design patterns could plausibly be combined in several different
ways, even when limiting the context to level design. Perhaps the most
straightforward way is creating compositional content generators, that view
each pattern as a spatial design element and simply combine these elements
by connecting them next to each other. This can be done either with static
elements, as in Mawhorter’s ORE, or with parameterised elements, as in
Tanagra. Patterns could be connected sequentially in one dimension (as in
Tanagra), two dimensions (as in ORE) or potentially in three dimensions. It
is also conceivable to stack patterns, i.e. place several patterns at the same
place. This would have the effect of modulating one pattern by another.
Some patterns may fit well to certain patterns if it is placed before or after.

Another way of using patterns in the PCG process is to use patterns
as objectives, e.g. as evaluation/fitness functions or constraints in search-
based PCG. The existence of particular patterns could be seen as desirable
or undesirable properties, biasing the search in content space so that the
resulting content would be more likely to include or not include certain
patterns. Such an approach could potentially lead to more variation than the

7.4 a plumber in a strangely designed land 71

composition-based approach, but is also more computationally expensive
and harder to predict. An example of this approach is the “choke point”
evaluation function in a recent attempt to evolve maps for the StarCraft real-
time strategy game [224]. Maps which contain choke points are assigned
higher fitness and the results of the level generator are therefore likely to
contain this particular pattern.

With both approaches, patterns can be selected that are particularly well
suited to a particular player, for example in order to maximise entertain-
ment as predicted by a player model.

7.4 a plumber in a strangely designed land

In the classic (action) platform game SMB [158] the player guides the pro-
tagonist Mario (in single player mode) through the world of the Mushroom
kingdom where platforms, holes in the ground (gaps), huge green pipes,
boxes and blocks acts as aid and obstacles. Furthermore the land seems
to be filled with aggressive and deadly enemies like Goombas, Bloopers,
Bullet Bills, Buzzy Beetles, Cheep-Cheeps, Hammer Bros., Koopa Troopas,
Koopa Paratroopas, Lakitu, Piranha Plants, and Spinies.

SMB consists of 8 worlds with 4 levels each and 11 bonus areas. The
bonus areas are often small levels containing extra rewards, like coins and
power-ups, while other bonus areas contain warp zones. The warp zones
functions as “portals” [203] to other worlds or levels other than the next
in sequence allowing a more experienced player move through the game
without risking the loss of Mario’s “lives”. The last level of each world (the
levels named 1–4, 2–4, etc.) takes place inside castles and end with a fight
against the main antagonist Bowser. These “boss fight” levels are different
than the other levels in such a way that they contain long straight sections
with few obstacles and end with a hanging bridge over a lava pit where
Bowser is supposed to be dropped into.

In the following section, we present our case study of analysing level
content in order to find level design patterns in SMB.

72 paper 1 – patterns and procedural content generation

7.5 looking for patterns in all the right places

In order to find patterns in SMB we apply a combination of heuristic anal-
ysis [55] and rhythm groups [42] [203]. Rhythm groups “are often fairly
small, encapsulating challenging sections of gameplay” [203]. By dividing
every level into sections separated by areas where no or limited threat is im-
posed upon the player’s avatar we get reasonable sized sections to compare,
group and classify into patterns.

Every level in SMB contain about 15 beats (only 10 beats in level 1–4 and
the maximum 30 in 8–1 with an average of 15.5). However, not all of these
beats are unique enough to qualify as patterns but SMB contains more than
the 4 geometry patterns and the 4 multi-beat patterns similar to those used
in Tanagra [208]. We base the names of the different groups on the names
used in Tanagra [208]. It should be noted that we base our suggestions on
the analysis of level 1–1, 1–2, 1–3, 2–1, 2–3, 3–1, 3–2, 3–3, 4–1, 4–2, 5–1, 5–2,
5–3, 6–1, 6–2, 7–1, 7–3, 8–1, 8–2 and 8–3. Thus omitting 1–4, 2–4, 3–4, 4–4,
5–4, 6–4, 7–4 and 8–4 due to their focus on the fight with Bowser and 2–2

and 7–2 which have an underwater setting. The levels 4–3 and 6–3 includes
a sort of timed platform which falls down if Mario remains too long on
them which might yield a doubled number of suggested patterns due to
the time limitation.

7.5.1 Examples of Super Mario Bros design patterns

In this section of the paper we intend to present our suggested patterns
briefly together with illustrations of a few of those. The full list of discov-
ered patterns can be seen in table 4 and 5. The illustrations aim to clarify our
suggested patterns together with one or more solutions of how the player
can solve the problem.

One could argue that the 23 suggested patterns are really only variations
on five patterns, one for each group. This points to the problem of choosing
a relevant level of abstraction when analysing a level into patterns. We have
chosen a relatively fine-grained analysis, as we want to point out that there

7.5 looking for patterns in all the right places 73

are meaningful differences in terms of gameplay between patterns that are
superficially very similar. For example, two 2-hordes afford different solu-
tions than one 4-horde (you could jump and land between the two enemy
groups in the first case, but not in the second). We note that it would be
plausible to see the five groups we identified as “macro-patterns” and the
23 patterns within them as “micro-patterns”, but we will not pursue this
semantic point any further here.

Figure 14: The 3-horde and The Roof valley patterns.

Figure 14 contains the two patterns “3-Horde” and “Roof valley”. “3-
Horde” can be solved with a triple short jump, a long jump or a medium
jump onto the first or last Goomba. The medium jump onto the last Goomba
can with good timing allow the player to reach the pillar in the following
“Roof valley”-pattern. The “Roof valley”-pattern is provided with a Koopa
Paratroopa which, if timed properly, provides a boosted jump out of the
valley. If the player misses the timing of the jump altogether, he is faced with
a Paratroopa in the valley in which he has failed to jump out of. Figure 15

also contains two patterns; a now familiar “3-Horde” and a “Pillar gap”-
pattern with Piranha plants forcing the player to both time the jumps with
the movement of the plants in and out of the pipes movement as well as the
escalating height of the pipes. By using Piranha plants the player may lose a
life even though a correct “side-jump” between pipes normally would save

74 paper 1 – patterns and procedural content generation

him because he might end up in one of the plants that is moving in and out
of the pipes. If a designer wished make this obstacle easier to pass he could
remove the plants. Figure 16 contains two patterns that share the same
middle pipe. If we compare the first “Valley empty”-pattern with the second
“Valley enemy”-pattern we see that the difference in the height of the pipes
suggest that the jump must be more precisely coordinated in relation to
the pipe in the second pattern than in the first but if the player times the
jump as a landing onto the Goomba, the bouncing of the Goomba will exert
enough vertical speed that the ending pipe will be overshot. In figure 17

we can see two simple “Gap”-patterns surrounding the more interesting
combination of “2-Horde”, “3-Path” and “Risk and reward” patterns. A
power-up mushroom is placed in the second horizontal platform in such
a way that two Goombas drops down upon the player if the timing is not
right. If the player chooses to jump onto the question mark-block so that a
Goomba is flipped the mushroom will go the other way and maybe leave
the screen (in the original SMB, Mario can not go left to scroll the screen
left) and the player does not get his reward.

7.5.1.1 In depth descriptions

Due to the limited space available we have chosen to describe only a few of
the patterns in more detail (see table 6, 7, 8, 9 and 10). We have chosen to
exemplify the different groups of patterns by picking one from each group
(see table 4 and 5).

7.6 the plan for pattern-based mario level generation

The previously suggested 23 patterns can be varied for enhancement of the
play experience in several ways. For instance, the patterns with enemies
can be varied by selecting different types of enemies. In SMB level 1–2 a
Koopa Troopa is followed by two Goombas which enables the player to get
variation in how to solve the situation; the player can either short jump and
medium jump over the “Enemy” and “2-Horde” patterns or choose to jump
onto the Koopa Troopa twice to use its shell to knock out the two Goombas.

7.6 the plan for pattern-based mario level generation 75

The prior solution is less risky than the latter and similarly the reward is
lower with the prior solution. The player may also choose to run under-
neath the platforms and ignore the mushroom. The third possible path is
to approach the two Goombas a bit more cautiously and jump over them
and then use the third platform to avoid the last gap altogether. Figure 18

may serve as an illustration on the previous situation replacing the Koopa
Troopa with the two stand alone Goombas. By recognising a player choos-
ing the solution with the higher reward the PCG algorithm could generate
patterns with higher demand on player skill. Within each group of patterns
a player that solves a pattern successfully can be faced with a pattern from
the same group one step down the list. For all patterns the length of plat-
forms can be changed both for variation and for difficulty. Similarly the
patterns can with parametrisation be varied in length and height as well
as difficulty in conjunction with adding risk and rewards. Possible param-
eters are the number of gaps, the length of a gap, the length of a platform,
enemy types, amount of enemies and if risk and reward should be present.
Figure 19 illustrates a 3-Path and a Risk and Reward pattern combined. At
the current stage, we have implemented a composition-based level genera-
tor that randomly chooses among the 23 patterns, and generates playable
levels for Infinite Mario Bros, (IMB), a public domain clone of Super Mario
Bros that has been used extensively in game AI and PCG research [223]. It
should be noted that IMB already contains a random level generator func-
tion with predefined sections. However, our level generator is based on ex-
isting content that was placed in SMB trying to take advantage of the effort
that Nintendo put into designing and play-testing its original successful
product. By doing so we hope that an experienced player will enjoy these
levels as much as he did playing the original SMB but that the variation
the randomisation provides will keep the player interested in playing the
game for a longer time. In the immediate future, we will add functional-
ity for parameterising the patterns, and selecting patterns to fit particular
player profiles. We will also address the problem of preserving playabil-
ity while stacking patterns (see figure 20); this will likely be done through
simulation-based evaluation functions. We also intend to design metrics in-

76 paper 1 – patterns and procedural content generation

dicating when a player master a skill enough to be faced with a certain
pattern and how often.

7.7 conclusion

In this short paper we have discussed the potential roles of design patterns
in PCG, and presented an analysis of the levels in the original Super Mario
Bros game into design patterns. Further, we discussed ways of creating
levels in Super Mario Bros by combining these patterns. By ordering the
patterns in sequence of difficulty we can vary the content in the new levels
according to what a player does. In order to further vary the content we
can use parametrisation (platform length, gap length, enemy type, risk and
reward) in conjunction with a specific pattern. The patterns can be placed
in sequence or used together to create varied content.

7.8 acknowledgments

Thanks to the anonymous reviewers, Paul Davidsson, and Gillian Smith for
insightful comments on the paper.

7.8 acknowledgments 77

Table 4: Patterns for Super Mario Bros. grouped by theme part 1.

Enemies

Enemy A single enemy

2-Horde Two enemies together

3-Horde Three enemies together

4-Horde Four enemies together

Roof Enemies underneath a hanging platform making
Mario bounce in the ceiling

Gaps

Gaps Single gap in the ground/platform

Multiple gaps More than one gap with fixed platforms in between

Variable gaps Gap and platform width is variable

Gap enemy Enemies in the air above gaps

Pillar gap Pillar (pipes or blocks) are placed on platforms be-
tween gaps

Valleys

Valley A valley created by using vertically stacked blocks
or pipes but without Piranha plant(s)

Pipe valley A valley with pipes and Piranha plant(s)

Empty valley A valley without enemies

Enemy valley A valley with enemies

Roof valley A valley with enemies and a roof making Mario
bounce in the ceiling

78 paper 1 – patterns and procedural content generation

Table 5: Patterns for Super Mario Bros. grouped by theme part 2.

Multiple paths

2-Path A hanging platform allowing Mario to choose dif-
ferent paths

3-Path 2 hanging platforms allowing Mario to choose dif-
ferent paths

Risk and Reward A multiple path where one path have a reward and
a gap or enemy making it risky to go for the reward

Stairs

Stair up A stair going up

Stair down A stair going down

Empty stair valley A valley between a stair up and a stair down with-
out enemies

Enemy stair val-
ley

A valley between a stair up and a stair down with
enemies

Gap stair valley A valley between a stair up and a stair down with
gap in the middle

Figure 15: The 3-horde and the Pillar gap patterns.

7.8 acknowledgments 79

Figure 16: The Empty Valley and the Enemy Valley patterns.

Figure 17: The Gap, the 3-Path, the Risk and Reward and the Gap patterns.

80 paper 1 – patterns and procedural content generation

Table 6: 4-Horde Pattern Description.

Enemies – 4-Horde

Problem The player can act and traverse the level slowly without
risk. The player masters the long jump and can therefore
jump over multiple enemies.

Solution By placing four enemies in a tight formation the maxi-
mum jump length is not enough to pass over the enemy
which forces the player to use timing to land on any of the
enemies for a second jump over the remaining enemies.

Using the
pattern

Suitable use is on long platforms so that the enemies do
not fall down any gaps. The pattern can also be used in
conjunction with valleys to limit the landing area of the
player. The pattern can be used to force the player to time
running actions if they are placed on high platform allow-
ing them to drop down on Mario.

Comments Not all enemy types are suitable for this pattern. For in-
stance, enemies that Mario cannot jump onto like Spiny
may cause impassible sections of a level. Power-ups
should always be considered when applying this pattern.
If a too powerful power-up is placed in the wrong posi-
tion the difficulty of the pattern can be drastically lowered.
This pattern should not be misinterpreted as two 2-Horde
patterns, the distance between the enemies in the forma-
tion is crucial.

7.8 acknowledgments 81

Table 7: Pillar gap Pattern Description.

Gaps – Pillar gap

Problem The player can jump and traverse vertical obstacles with-
out risk. The player masters high jumping and can there-
fore jump over high obstacles.

Solution By placing a series of pillars with a limited width a less
skilled player may overshoot a jump and miss the pillar
and fall down the gap. The introduction of varying height
of the pillars the player needs to master both vertical ob-
stacles as well as the length of the jump.

Using the
pattern

Suitable use is near the end of the level so that Mario is
high enough to get to the top of the flagpole at the end of
a level.

Comments No power-up can save the player. But a skilled player may
jump on the side of the pillar and perhaps bounce out of
the gap danger.

Figure 18: Mario in a “Multiple path” facing “Enemy”, “Enemy” and “2-Horde”.

82 paper 1 – patterns and procedural content generation

Table 8: Enemy valley Pattern Description.

Valleys – Enemy valley

Problem The player can jump and traverse vertical obstacles with-
out risk. The player can act and traverse the level slowly
without risk.

Solution By fencing in an enemy between two vertical obstacles
they player is forced to engage the enemy without it
falling through a gap. If a Koopa Troopa is used and
the player jumps on it and then jumps on the shell the
player will risk losing power-ups or a life due to the high-
speeding shell bouncing between the vertical obstacles.

Using the
pattern

The pattern can be used most types of enemies with the
exclusion of Bullet Bill unless the distance between the
vertical obstacles are placed with enough distance in be-
tween.

Comments The pattern needs a sufficient platform length.

Figure 19: Mario leaving a “3-Path” and entering “Risk and Reward”.

7.8 acknowledgments 83

Table 9: Risk and Reward Pattern Description.

Multiple paths – Risk and Reward

Problem The level layout is more or less linear and the player’s
choice is limited.

Solution Provide multiple paths where rewards, gaps and enemies
are placed so that the player is forced to choose a spe-
cific way through this section of the level. The player can
choose the specific path according to his/her skill and risk
appetite as well as what the player consider their “favorite”
obstacles or enemies to be. The need of a specific reward
or power-up may also affect the choice.

Using the
pattern

The primary use is to create variation. The pattern could
also be used to introduce a needed reward or power-up or
to add a more relaxed section of the level.

Comments The introduction of a different type of decision making
may affect the player’s reaction time and therefore the dis-
tance between the beginning of the pattern and enemies
and gaps must be thought through.

84 paper 1 – patterns and procedural content generation

Table 10: Stair up Pattern Description.

Stairs – Stair up

Problem The player needs to be on a different height and the player
character cannot jump high enough.

Solution By providing tightly placed platforms, blocks or pipes
with increasing height the player can jump onto them and
reach a higher position.

Using the
pattern

The pattern is usable before any section where the player
character needs to be high enough but unable to due to
limitations in jump ability. In SMB it is often needed be-
fore the end of the level so that Mario may reach the high-
est point on the flagpole. It is also useful for variation
before a multi-path pattern allowing the player to drop
down instead of jumping up.

Comments The stair should not be placed too high to reach for the
player character or be so high that the player is limited
in jumping by the top screen unless this is the intended
effect.

7.8 acknowledgments 85

Figure 20: Mario in an interesting combination of pillars and “Stair-up”, “Stair-
down” and “Roof” without gaps.

8PA P E R 2 – PAT T E R N S A S O B J E C T I V E S F O R L E V E L
G E N E R AT I O N

Steve Dahlskog and Julian Togelius

abstract

This paper discusses how to use design patterns in procedural level generation,

with particular reference to the classic console game Super Mario Bros. In a previ-

ous paper, we analyzed the levels in this game to find a set of recurring level design

patterns, and discussed an implementation where levels were produced from con-

catenation of these patterns. In this paper, we instead propose using patterns as

design objectives. An implementation of this based on evolutionary computation is

presented. In this implementation, levels are represented as a set of vertical slices

from the original game, and the fitness function count the number of patterns found.

Qualitative analysis of generated levels is performed in order to identify strengths

and challenges of this method.

published in

Proceedings of the 2nd Workshop on Design Patterns in Games

SASDG, Chania, Crete, Greece c©2013

ISBN 78-0-9913982-1-8

87

PAT T E R N S A S O B J E C T I V E S F O R L E V E L G E N E R AT I O N

8.1 introduction

This paper aims to combine design patterns and procedural content gene-
ration (PCG) in the domain level design. Our approach is geared toward
the classic 2-dimensional platformer type of game and especially the classic
Super Mario Bros. (SMB) [158]. This approach is based on a previous arti-
cle where we analyzed SMB-levels to find 23 different reoccurring patterns
of 5 “families”; Enemies, Gaps, Valleys, Multiple paths and Stairs. In that
paper, we also used the suggested level patterns to implement a level gener-
ator that concatenated these patterns with some variation in height, length
or difficulty. In this paper we consider a different take on the relationship
between patterns and PCG, seeing patterns not as building blocks but as
objectives. This inverts the relation between pattern generation and detec-
tion, and conceptually separates building blocks from design objectives. In
order to increase the variation of the content but still incorporate the sug-
gested level design patterns of SMB we implemented a prototype based on
evolutionary computation. In this implementation the representation of le-
vel content is made by taking recurring pieces from SMB. These pieces are
just one tile wide and thus we will refer to them as vertical slices. By chop-
ping up Mario levels into finer elements in this way, we can considerably
increase the variety of generated levels while still only using existing mate-
rial. The fitness function for the evolutionary algorithm counts the number
of patterns found in the candidate levels. This approach allows us to create
levels that resemble the original Super Mario Bros levels both on a micro le-
vel, by using existing vertical slices, and on a macro level, by incorporating
the same design patterns.

89

90 paper 2 – patterns as objectives for level generation

8.2 background

In this section we intend to clarify where our approach is grounded by
shortly review patterns, design patterns in games and automatic generation
of game content as well as what game content in games may be.

8.2.1 Design patterns

During the seventies, Alexander et al. developed a language of patterns for
architectural use with the goal to allow others to express design abilities.
“Each pattern describes a problem which occurs [...] in our environment,
and then describes the core solution to that problem...” [7]. The advantage
of the pattern idea is the allow a designer to use a general pattern to solve
reoccurring problems. This idea has gradually spread to other areas. In
object oriented software development Gamma et al. have defined a set of
templates for solving general design and programming problems [82].

Design patterns and games

Design Patterns in digital games (DPG) can be used for different activities
ranging from scholastic approaches to practical development of (digital)
games. Suggested use range from creative aid in design activities where
DPG can support knowledge transfer between designers while they gener-
ate, communicate and modifiy design ideas and concepts. DPGs can also
be used as an analytical tool as well as a learning tool for scholars in both
game analysis and game design activities. The design patterns may be used
as a tool to understand player behavior during play-testing.

Björk and Holopainen have extensively documented design patterns for
game design [30, 29]. Design patterns have also been explored in a variety
of aspects, ranging from pattern-related design in relation to game mechan-
ics [5] to specific game contexts, like old-school action games [41],
RPGs [206], FPSs [102] and social network game applications in the style of
“’Ville” games [126].

8.2 background 91

8.2.2 Game content and game development

Digital games can be seen as the union of two types of digital artifacts:
game content and a game engines. The game engine’s purpose is to handle
user input, to control AI-agents and to present the game content to the user.
Typically the game content consists of polygon meshes, texture maps, level
geometry, non-player characters, player-characters, missions, quests, items,
etc.

Cost drivers

Digital games have become more expensive to develop [213, 115], at least
for the average commercial project. The driver of costs is primarily that the
advancement of the technical platform that runs the digital game (hardware
and game engine) requires more labour to be spent in content development.
Customers expect more media and with higher quality [78] which in turn
demands more of the engine that uses this media which therefore inher-
ently becomes more complex and may even drive the cost to develop and
maintain further.

Game development and PCG

Procedural content generation (PCG) is the process of automatically or semi-
automatically generating game content. Game developers used PCG suc-
cessfully to generate game content for different purposes. Examples range
from saving developer time with the game Darwinia [107], or saving money
as for Just Cause [18], exploring possible game content as with The Sen-
tinel [75], to have variation and creating unique game content as with Mine-
craft [150] and to saving main memory as in Elite [3, 214].

Lately PCG have spurred interest from researchers and several aspects
have been explored as a result. Examples vary from search-based methods
to find maps for RTS games [224], levels for platform games [139], and
answer set programming for generating mazes [199].PCG could be used in
game design and game development in several different ways, depending

92 paper 2 – patterns as objectives for level generation

on whether the algorithm is seen as a tool, an expert, a designer in its own
right etc [117].

There are a couple of approaches that could combine PCG and design
in fruitful ways. Firstly, we could use PCG for specific, well defined (and
therefore well tested) design tasks, as for instance in Civilization [147] where
it is used to generate new world maps during run-time (i.e. online) or dur-
ing development as to generate a large set of varying game items, like in
Borderlands [90], where PCG were used in several aspects but put to exten-
sively use for generating a large set of weapons. Secondly, we could let the
PCG process be the central content provider to the whole title as in Galatic
Arms Race, FTL, Terraria, Minecraft, Dwarf Fortress [68, 218, 175, 150, 6]. A
third approach would be to start with handcrafted content and letting the
PCG process emulate or copy the designers choice with some kind of varia-
tion. This approach can be utilized both for online or offline PCG. The offline
version could be used both during the principal development of the game
title or after release in order to provide more content to generate more sales
of the main title or it could be used to create add-on packages for players
who has finished the main game.

8.2.3 Fitting into the pattern

Let us recall what level designers do; “Level designers use a toolkit or ‘le-
vel editor’ to develop new missions, scenarios, or quests for the players.
They lay out the components that appear on the level or map and work
closely with the game designer to make these fit into the overall theme of
the game.” [78]. In order to be able to do this together with PCG we have
previously applied a content analysis based on a combination of heuristic
analysis [55] and rhythm groups [42, 203] and we suggested a set of level
design patterns for the game Super Mario Bros. (SMB) [158] and presented
a prototype of a level generator13 [48]. In the previous prototype, we used
parameterized but fairly straight forward patterns taken from SMB that
were randomly picked, modified for difficulty and placed in sequence to
form a level. The level generator prototype was able to generate SMB lev-

8.2 background 93

els with high similarity to the original game but some limits in the aspect
of variation of the content. The only variation the prototype demonstrated
was due to the parameterization (different hight, different length, amount
of rewards, amount of risk) of the existing patterns.

For the work-in-progress level generator that we present in this paper
we try to approach the problem of generating content by using patterns as
the objectives for the evolutionary method rather than generating pattern
building blocks as we did with a previous prototype. Our motivation to
seeking this approach rather than the reverse is to allow for a greater “cre-
ative freedom” or in computer science terms; a larger14 design space for the
PCG-engine than the previous prototype could.

Our goal is to be able to produce a level generator that recreates the
particular design and look-and-feel of the levels from the original SMB,
while still being novel and offering new challenges.

Examples of patterns

Due to the limited space in this paper we will only partially include the
suggested patterns that we utilize to generate content (see table 11, figures
21, 22, 24, 25 and [48]).

8.2.4 Related work

Previous work in the same are as ours is the Tanagra mixed-initiative le-
vel generator [208] founded in analysis of platform game levels by Smith
et al. [203]. Tanagra is an interactive tool for level designers that utilize a
constraint solver for the creation of level geometry according to a number
of patterns. The patterns are of two types, single-beat (like “gap pattern”
and “spring pattern”) and composite patterns (like “valley” and “mesa”)
which are implemented with some flexibility that can be extended with
the aid of the constraint solver to fit the the level. Another approach is the
“occupancy-regulated extension” (ORE) [139], that works by adding bits
and pieces of jigsaw-puzzle-like parts from levels in a compositional way to
solve patterns in level generation.

94 paper 2 – patterns as objectives for level generation

Table 11: Examples of patterns for Super Mario Bros.

Enemies

Enemy A single enemy

2-Horde Two enemies together

3-Horde Three enemies together

4-Horde Four enemies together

Roof Enemies underneath a hanging platform making
Mario bounce in the ceiling

Multiple paths

2-Path A hanging platform allowing Mario to choose dif-
ferent paths

3-Path 2 hanging platforms allowing Mario to choose dif-
ferent paths

Risk and Reward A multiple path where one path have a reward and
a gap or enemy making it risky to go for the reward

The use of patterns as objectives, e.g. as fitness functions in search-based
PCG similar to ours is the “choke point” evaluation function while evolving
maps for StarCraft [32, 224]. The function assigned a higher fitness to maps
that contains choke points and the result of the level generator is thus likely
to have that pattern.

8.3 mario

The original SMB platform game, initially published by Nintendo in 1985,
has been the inspiration for Markus “Notch” Persson’s public domain Java-
based clone which in turn have been modified for the Mario AI and PCG
competitions [223]. In SMB Mario has to traverse 8 worlds with 4 levels each.
The 4th level of each world is a “Boss-fight”-level with different layout than
the other levels.

8.4 representation and genotype-to-phenotype mapping 95

8.3.1 The original representation

The original game from Nintendo that was released in 1985 (on NES-cart-
ridge) is a bit problematic to analyze and use as a base for content genera-
tion since the implementation is optimized for space rather than readability.
This basically means that in order to build something within the original
implementation you have to first know the “hex value”15 of the geometry
you want to build, in what page (each level is implemented as a string of
pages) you want to place it and where you want to place it in this page. The
first level in SMB (World 1–Level 1, which we for future reference purposes
will call W1L1) contains 13 pages and ends a few tiles after the flag pole16.
The second piece of geometry you encounter as a player is (see figure 24) im-
plemented as a horizontal brick with the length of five with two “Question
mark”-block placed on top in the second and fourth tile (one containing
a mushroom and the other a coin). This form of representation is effective
when representing the horizontal and vertical block lines (including rows of
coins), pipes (different heights), rock-stairs and the castles flagpoles. In fact,
some geometry and enemies have double functions, as in the underwater
setting in W2L2 and W7L2 (which can be changed to a level on land by ma-
nipulating a few hex values). In this case the vertical underwater vegetation
becomes vertical bricks and some Cheep-cheep enemies becomes Bullet Bills.
The horizontal green blocks becomes land-based blocks. The representation
and optimization for SMB level geometry may have affected the design of
the levels in a similar way that the limited memory capacity of Atari 2600
affected the design of the games on that platform [151], since it is more
costly in the SMB-representation (in terms of memory) to draw more ob-
jects and the cost of longer sections are relatively cheap (low or no extra
cost compared to draw a single tile).

8.4 representation and genotype-to-phenotype mapping

In this section we present our approach to prototype a search-based level-
generator for SMB. Our intentions were to apply an evolutionary algorithm

96 paper 2 – patterns as objectives for level generation

that evolves levels containing the identified patterns. Three different rep-
resentations were explored: ρ0, ρ1 and ρ2. Since the method we apply is
in the realm of stochastic optimization and metaheuristics the problem of
how to represent the genotype (the data structure that the evolutionary al-
gorithm acts on) and its relation to the phenotypes (the data structure that
is evaluated by the fitness function) was given critical concern [228].

We initially approached the representation problem in the most direct
way, thinking of representing levels as two-dimensional matrices with in-
teger values for each block mapping directly to the phenotype (ρ0). This
would lead to a very large search space with only a small region consist-
ing of playable levels. This idea was therefore quickly discarded. Next, we
considered viewing the geometry of SMB as a range of integers spanning
from 0 (representing a hole in the ground) to 10 (the maximum height of
an obstacle in SMB). This representation will be referred to as ρ1.

However this idea was abandoned when we inspected and compared the
levels of the original SMB with our generated levels and noticed the scarce
presence of ground based obstacles. In the original SMB most non-moving
obstacles are combinations of rocks, pipes and land-based or mushroom-
based platforms17. Apart from that, the enemies in SMB were not present
in ρ1 but gave some food for thought for the next idea of how to repre-
sent the genotypes when we tried to introduce them in this representation.
The fact that a Goomba is placed in a certain piece of elevated geometry
suggest an explosion of possibilities concerning a specific type of the geno-
type. Simply put; the need to differentiate between a specific enemy type
(11 different ones) and the height (11 different ones) of a geometry type (12

different ones) grows towards a search space that is computationally expen-
sive when we factor in the length of a level and the size of the population.
This computational expensive solution may not pose a practical problem un-
til one decide on applying this PCG solution in an online18 situation with
actual users and tries to generate content on the fly.

Thus, further studies of the original content of SMB (see section 8.3) led
us to decide on a different approach than in our previous prototype (see

8.4 representation and genotype-to-phenotype mapping 97

Figure 21: A simple 2-Path-pattern
instance in SMB to the
left. This can be repro-
duced with only 2 verti-
cal slices indicated with
black frames shown to
the right.

section 8.2.3) approaching the content as individual pieces and thus keep
with the pattern approach.

8.4.1 Vertical slices

Our current solution (which we refer to as ρ2) is based on the idea to ap-
proach content from the perspective of Mario and not the view of the player.
In the perspective of the player we travel from left to right but as Mario
we travel forward one step at the time jumping onto objects with varying
vertical placement. From this perspective the content of SMB can be viewed
as vertical slices that together with other slices make up our previous sug-
gested patterns.

Level genotypes are represented as strings of length 200 with an alphabet
of 24 symbols. Each symbol corresponds to a vertical slice of Mario level
with a length of 1 block and a height of 13 blocks. Levels (phenotypes) are
constructed by simply appending vertical slices, giving all levels a length
200 blocks. The 24 slices used for the alphabet are representative samples
from patterns extracted from the original SMB.

98 paper 2 – patterns as objectives for level generation

Initially, we were concerned that since the vertical slices are not always
compatible with each other, we might need an extra constraint checking
function that would be time consuming to design, implement and complex
to maintain and debug. However, with the Mario-viewpoint and the more
detailed analysis of the content in the original SMB we concluded that the
variation of vertical slices is surprisingly limited. If we observe figure 21 we
have a section of SMB W1L1, that can be classified as a simple instance of
the “2-path”-pattern. In our representation this section is simply a series
of vertical slices of two types; the first one is used three times (in position
1, 2 and 4) and the second one is used once (in position 3). The two types
contains a ground block at the lowest hight of the level and a brick-block
or a question mark-block at height 4. In order to separate the instance of
the pattern from other instance we also need a simple piece of ground at
height 1. See figure 23 for an explanation of how slices are appended to
create levels.

Figure 22: A 3-horde-pattern in the wild (SMB World 8 Level 1).

8.4 representation and genotype-to-phenotype mapping 99

Figure 23: Adding vertical slices to form an instance of the pattern in figure 22.

8.4.2 Putting pieces together

In order to explain the vertical slices and how we combine them into pat-
terns we will use an example with an instance of the Enemy: 3-Horde-pat-
tern [48] (as in figure 22). The instance of the pattern could then be de-
scribed as a sequence of three identical vertical slices. Each of the slices are
simple geometry (in the example; a ground-tile at “ground” level) with an
enemy in a manner portrayed in figure 23.

Example 1

A simple 2-Path-pattern instance in SMB which can be reproduced with
only 2 vertical slices (one slice with a brick-tile and one slices with a ?-block)
see figure 21.

Example 2

By adding a vertical slice with two blocks (a brick-tile and ?-block) and
reusing two vertical slices from figure 21 we get this instance of a 3-Path-
pattern in figure 24.

100 paper 2 – patterns as objectives for level generation

Figure 24: A 3-Path-pattern.

Example 3

Figure 25: Another 3-Path-pattern.

By adding a vertical slice with two ?-blocks and reusing a vertical slice
from figure 21 we get this instance of a 3-Path-pattern in figure 25.

8.5 fitness function 101

8.5 fitness function

In our implementation (see figure 26) we use a fitness function to decide
which level is the best suited to generate offspring and finally be chosen
as the level to be played. In essence we perform a linear search through
each member of the population and assign a fitness value to each member,
the higher the value is (indicated as low, medium, high in table 12), the
greater the chance of surviving the next generation is. Some patterns are
only supported by stacking of beginning and endings of patterns where the
parts add up to a higher value (use “medium–high” as a value to compare
with other values in table 12) except for Gap enemy which only need low–
medium.

If a level sequence contains a pattern (see section 8.4.2) the individual
population member gets a higher fitness value. If a level contains a sequence
of symbols representing three consecutive Goombas it is assigned a positive
value. Similarly a sequence of rocks with increasing height is assigned a
value depending on how long the sequence is. The fitness value assigned
is higher if the pattern is uncommon in a random sequence. Unplayable
sequences are given a high negative number (but not −∞) allowing breed-
ing with a lower chance of survival in order to allow mutation or cross-over
keeping the good part of the genotype for another generation. Uninteresting
sequences are given a low negative number in order to remove uninterest-
ing parts of levels. We allow some uninteresting sequences, like a string
of simple ground blocks in order to keep some kind of beat-like19 [208]
expression generated from this search-based approach.

The fitness function also contain beginnings and endings of patterns thus
allowing stacking of patterns on top of each other. A beginning or end-
ing is typically rewarded less than a full complex sequence. However, if
a beginning, a full pattern and perhaps another beginning or ending is in
a sequence this will give a cumulative higher value and thus solving the
suggested improvement of stacked patterns in the previous prototype [48].

102 paper 2 – patterns as objectives for level generation

Table 12: Patterns supported in the fitness function.

Enemies

Enemy Low

2-, 3-, & 4-Horde Low

Roof Medium

Gaps

Gaps Low

Multiple gaps By stacking

Variable gaps By stacking

Gap enemy Low–Medium by stacking

Pillar gap High

Valleys

Valley Low

Pipe valley Medium

Empty valley By stacking

Enemy valley By stacking

Roof valley By stacking

Multiple paths

2-Path Medium–High

3-Path Medium–High

Risk & Reward By stacking

Stairs

Stair up & Stair down Low

Empty stair valley Low

Enemy stair valley By stacking

Gap stair valley By stacking

8.6 evolutionary algorithm 103

8.6 evolutionary algorithm

In each evolutionary run, we use 200 levels as representations of our pop-
ulation and each genotype is initialized as a uniformly random string of
symbols drawn from the 24-character alphabet of vertical slices. We used
a simple µ+ λ evolution strategy with µ = λ = 50 with a combination of
mutation and one-point crossover as genetic operators20.

Before any evolution operation is performed on the population it is eval-
uated according to a fitness function (see section 8.5). After that the popu-
lation of 200 members are ranked according to its fitness value. The top 50

percent of the population are kept and the weakest 50 percent are discarded,
thus leaving 100 level positions for evolutionary purposes.

We then let the top 50 percent breed with each other and so utilizing the
“empty” positions in our population. The breeding is executed as a one-
point crossover between pairs in ranking order, in such way that the best
ranked is breed with the second in ranking, resulting in two new offspring,
and so on. Our implementation of the one-point crossover has a fixed place
for the crossover point in the middle of the parents’ strings and from this
point the strings are simply swapped with each other. In order to certify
that we do not get stuck in a local maximum of the search-space we apply a
simple mutation operation to the offspring by inject a new random charac-
ter from our alphabet in a random position. Since we have the opportunity
to run the level generator in offline mode our evolutionary search runs for
10.000 generations in the current version of the implementation.

8.7 examples of generated levels

The evolutionary approach together with vertical slices result in levels with
both patterns, stacking of patterns and similarity to the original game (com-
pare figure 28, 29, 30, and 31). However, our current implementation does
not support the concept of beats well enough21 where the content alternate
between high-intense and low-intense parts of the levels. Adding better sup-
port to this might solve the tendencies to tightly stack patterns and overfill-

104 paper 2 – patterns as objectives for level generation

Figure 26: Principal execution of the level generator.

Figure 27: One-point crossover, where parent 1 (in red) and parent 2 (in blue) result
in mixed-colored offspring child 1 and 2.

8.8 evaluation 105

ing game space as in figure 30 and 31. The reverse version of our approach
α-level (see section 8.8) in figure 28 is overfilling the game space but at least
our level generator does not do as bad.

Figure 28: α-level showing tendencies to overfill levels.

8.8 evaluation

In order to get some feedback on our prototype we devised a simple play-
test with three different levels generated from three different stand-points.
We refer to the different levels as α, β and γ. Level α was using a reversed
version of our fitness function that in principle, punished any form of pat-
tern or beginning or end of a pattern. Level β was generated using our
actual fitness function and level γ used a combination of our pattern-based
prototype and imitated original content from SMB. The play-testers con-
sisted of 24 experienced players (23 male, 1 female) in their twenties. The
test platform consisted of ordinary but high-end PC:s with keyboards as
control unit (UI). Our player feedback was gathered through a simple sur-
vey. In order to limit bias on previous play-through of other versions three
different groups were created with 8 individuals each playing the levels
in different order (Group 1: α, β, γ, Group 2: β, α, γ, Group 3: γ, β, α.).

106 paper 2 – patterns as objectives for level generation

Figure 29: β-level showing tendencies to stack patterns.

Apart from an open-ended question regarding the overall experience with
the level and some questions covering general information the play-testers
supplied level-specific information on three questions on a 6-value scale.
The level-specific questions were on; 1) Boring–Fun, 2) Not similar–Similar
and 3) Easy–Hard. The results show a marginal difference between the ap-
proaches: our search-based approach (β) seemed to be slightly more fun
than the others, more similar to the original than α but easier to beat than
γ (see table 13).

8.9 discussion

Search-based optimization solutions, like evolutionary approaches, work
well with patterns in regards to variation and can in our implementation
solve the issue of being able to stack patterns. However, the fine-tuning
of the fitness function may be problematic when introducing new patterns
since the values for rewarding or punish the level can affect previous config-
uration. We suggest that other content analysis methods are applied when
utilizing building-blocks smaller than beats or patterns because this can
give an appropriate frequency of reward, enemies and geometry.

8.10 conclusion 107

Figure 30: β sometimes stack patterns too close.

Since SMB has several levels with distinct look–and–feel in the different
worlds and levels we intend to implement a set of fitness functions that
allow for generating world and level specific content. We have planned and
prepared the next phase of the prototyping projects which will include a
frequency analysis of game content in order to fine tune the fitness functions
according to the different worlds and levels of the original SMB.

8.10 conclusion

This paper has discussed how patterns can be used in procedural level ge-
neration, and in particular how they can be used as objectives rather than
building blocks. An implementation of the idea of patterns as objectives for
generating levels for Super Mario Bros was presented. In this implemen-
tation, the original levels of Super Mario Bros recur in two ways: as the
fine-grained “vertical slices” that are recombined in the evolvable level rep-
resentation, and the higher-level patterns that serve as objectives. Thus, the
evolved levels retain much of the look and feel of original Mario levels, yet
the generator can output a large range of diverse levels. An exploratory user
study comparing levels that were generated with different fitness functions

108 notes

Figure 31: β almost overfill game space as α does.

gave some indication that those that were evolved to maximize the number
of patterns appear more similar to the original game.

notes

13Presented at the First Workshop on Design Patterns in Games, 2012.
14But still more distinct and limited than full randomization of levels.
15A value represented in a positional numeral system with a base of 16 (where the symbols

usually are 0-9 and A-F). A byte value is conveniently represented as 00-FF instead of 0-255.
16Including the first “empty” screen.
17See SMB level W1L3 for an example of land-based platforms and level W4L3 for an exam-

ple of mushroom-based platforms.
18I.e. during runtime.
19A rhythmic variation between exciting parts and calm parts where the player can regain

energy to tackle the next exciting section.
20The one-point crossover is illustrated in figure 27.
21According to some comments by the play-testers. See section 8.8 for more play-test feed-

back.

notes 109

Table 13: Results by level.

Version Avr. Median Standard

deviation

α Fun 3.75 4 1.041

α Similar 4.125 4 1.062

α Hard 3.5 3 0.791

β 3.792 4 1.159

β 4.625 5 0.906

β 2.375 2 0.989

γ 3.708 4 0.923

γ 4.833 5 0.875

γ 3.292 3 1.006

110 notes

Figure 32: Not similar–Similar, Blue = α, Red = β and Green = γ.

9PA P E R 3 – P R O C E D U R A L C O N T E N T G E N E R AT I O N
U S I N G PAT T E R N S A S O B J E C T I V E S

abstract

In this paper we present a search-based approach for procedural genera-
tion of game levels that represents levels as sequences of micro-patterns
and searched for meso-patterns. The micro-patterns are “slices” of original
human-designed levels from an existing game, whereas the meso-patters
are abstractions of common design patterns seen in the same levels. This
method generates levels that are similar in style to the levels from which
the original patterns were extracted, while still allowing for considerable
variation in the geometry of the generated levels. The evolutionary method
for generating the levels was tested extensively to investigate the distribu-
tion of micro-patterns used and meso-patterns found.

published in

Proceedings of the Applications of Evolutionary Computation 2014

Springer c©2014

doi: 10.1007978-3-662-45523-4_27

111

P R O C E D U R A L C O N T E N T G E N E R AT I O N U S I N G
PAT T E R N S A S O B J E C T I V E S

9.1 introduction

The study of Procedural Content Generation (PCG), i.e. how game content
such as levels, items, quests and characters can be created algorithmically,
is currently one of the most active topics within academic research on arti-
ficial and computational intelligence in games. A large variety of methods
have been proposed to generate an even larger variety of types of game
content, subject to various objectives and constraints [193]. The work is mo-
tivated both by a real industry need for lowering the cost and saving time of
content production and enabling endless user-adaptive games, and by aca-
demic interest in formalising game design and building creative machines.
A recent “vision paper” for PCG research lists a number of open research
challenges [229]. One of them is to learn to imitate style: could you build a
content generator that was shown a number of examples of the creative out-
put of a human or team of humans, and that then learned to produce more
artefacts in the same style that were clearly original but still recognisably of
the same style?

Another active research area has been that of game design patterns. A
design pattern is a general concept, which has its roots in architecture, but
has been applied both to software design and to game design. Game design
patterns have so far been identified manually, and the investigation on how
to integrate patterns into PCG has just started.

In this paper we demonstrate how practical game design patterns can be
combined with procedural content generation to generate game levels that
imitate a certain design style, and report the results of a series of experi-
ments using a platform game benchmark. We have previously analysed the
classic game Super Mario Bros. (SMB) [158] and suggested a collection of

113

114 paper 3 – pcg using patterns as objectives

patterns and a PCG tool that produce levels by randomly picking copies
of these patterns and modifying them according to a desired length and
difficulty level [48].

Our prototype is based on evolutionary computation, where we will
search the solution space of combinations of simple building blocks for lev-
els that contain structures at a higher level. This way, we introduce a certain
measure of control and constrain the shape of the final level through both
the objective function and the choice of building blocks, while allowing a
significant amount of variation. In the prototype the representation is rely-
ing on existing content in SMB, namely on one tile wide vertical slices, which
we will also refer to as micro-patterns. The micro-patterns are extracted from
the original SMB levels. A level is simply a sequence (or string) of micro-
patterns — this applies both to the original levels and our generated levels.
However, not any sequence is interesting but in our prototype we search
for specific sequences or patterns that exists in the original game. These
sequences will we refer to as meso-patterns and they are our search objective
for our evolutionary approach.

We have previously reported initial work on this idea in a workshop
paper [49]. Compared to that paper, the current paper describes a more
mature system, and reports more in-depth results with several variations of
the fitness function and a better characterisation of the generator output.

9.1.1 Background

In the seventies, Alexander et al. proposed a pattern language for archi-
tectural application on all levels (regions, cities, neighbourhoods, buildings
and rooms) thus allowing everybody the ability to express design. Not only
structural and material issues are covered but also life experience like the
Street Cafe-pattern. The pattern language consists of a set of problems in an
environment together with a core solution to its corresponding problem [7]
thus giving a designer a tool to handle reoccurring problems. This power-
ful idea has spread to other areas like object-oriented software development
where Gamma et al. have defined a set of templates for solving general de-

9.1 introduction 115

sign and programming problems [82]. In the context of games have Björk
and Holopainen suggested an extensive collection of patterns for game de-
sign [30]. Similarly, others have looked into game mechanics [5] and specific
game contexts like FPSs [102], RPGs [206], and action games [41]. There
have also been some attempts to formulate abstract level design patterns
that can be specialised to concrete metrics for different level types [131].

Procedural content generation refers to the (semi-)automatic process of
creating game content. One common approach to PCG is the search-based
approach, to use evolutionary computation or other stochastic global search
/ optimisation algorithms [228] for searching the content space. An oft-
encountered trade-off in PCG is between control and variation. Methods
that have a high variation in output according to some measure usually af-
ford little designer control. Variation can be measured as expressive range,
the variation along relevant metrics of generated artefacts [202, 187]. Con-
trol comes in several flavours: control over style, player experience, diffi-
culty or even playability (e.g. specifying that there is a path from start to
end of a level).

9.1.2 Examples of patterns

Figure 33: Three consecutive patterns in SMB.

116 paper 3 – pcg using patterns as objectives

Because of the limited space available we can only briefly mention the
patterns that were found [48] in (SMB). The patterns can be grouped into
5 groups; 1) Enemies and hordes, (single and multiple variations), 2) Gaps
(single, multiple, variable length, combined with enemies and structures), 3)
Valleys (a boxed-in area with structures, possible combined with enemies),
4) Multiple paths (structures horizontally dividing game space combined
with enemies and rewards) and 5) Stairs (structures supporting vertical
repositioning combined with enemies and gaps). In figure 34 we can see
two instances of the 3-Horde pattern (Enemies) and in figure 33 we have a
3-Horde-pattern, a Pillar Gap-pattern and a Enemy-pattern.

9.2 rationale

Our application domain in this paper is the classic 2-dimensional plat-
former, Super Mario Bros. (SMB) [158] and our generator is implemented
using the Java-based Mario AI Benchmark22 [113].

The levels of SMB could be seen as 2D matrices where the cells contain
various items such as blocks, coins, enemies, etc.; this is also the internal rep-
resentation of levels in the Mario AI benchmark. Mario (when small) has
the size of 1 cell, and most levels have a length of 100-300 cells and a height
of 20 cells. A slice, or micro-pattern, is simply a vertical column of this array
– a subarray with length 1. By analysing the levels of the original SMB, we
have identified a library of such slices. New levels could be created by com-
bining slices from this library, drawn at random. Such levels would have
some similarity to the original levels, as they would not contain any slices
that did not exist in the original game. They would not, for example, con-
tain slices where enemies stack on top of each other or the player starts in
mid-air. However, these levels would be uninteresting at best, and probably
unplayable, as they might contain too long gaps, unclimbable walls, long
stretches of nothing, and generally no discernible structure. However, in the
space of all possible sequences of slices there should be many permutations
that are well-designed, playable levels that are similar to the original SMB
levels not only on micro level but also on meso- and macro-levels. How can

9.2 rationale 117

we find those levels? In order to guarantee playability we punish unplayable
sequences.

9.2.1 Representation

Our level representation is a sequence of symbols of length 200, where each
symbol stands for a specific micro-pattern (a vertical slice) taken from the
original human created content. The slice is one tile wide and in our exam-
ple we have a slice containing a Goomba standing on a ground tile. This
tile could be copied in sequence two or three times to make a 2-Horde or
3-Horde pattern (as in fig. 34).

Figure 34: To the far left we have a vertical slice (micro-pattern) with a Goomba on
low ground. To the left a sequence of copies of the same slice making
up a 3-Horde meso-pattern that in the original game can be found quite
often as in World 8, Level 1 seen to the centre-right and in World 1, Level
2 to the far right.

By adding new slices the solution space grows. The levels of the original
SMB contain fewer than 200 slices like this. In our representation, we use
an alphabet consisting of 23 frequently occurring micro-patterns. Most of
the slices come from unique-looking levels like W1L2 (the first level under

118 paper 3 – pcg using patterns as objectives

ground) and are not reused elsewhere in the game. The advantage of the
representation is the ease with which one can generate a level either by the
constructive or the generate-and-test approach [228]. One could for exam-
ple base a constructive PCG algorithm on a phrase-structure grammar with
pre-checked production rules or by randomly picking slices and evaluate
according to constraints. However, we will suggest another approach in the
next section.

9.2.2 Evolutionary algorithm

The search-based approach taken in this paper is based on a fitness func-
tion that rewards the presence of meso-patterns, the higher presence the
likelier a member is selected. We apply a simple µ+ λ evolution strategy
where µ = λ = 100 is combined with single-point mutation and one-point
crossover. In other words, of a population of 200 we apply selection (discard-
ing half of the population), reproduction (keeping half of the population and
using pairwise breeding to generate new members), recombination (fixed
one-point-crossover) and mutation (the slice at a randomly chosen position
in the level has its symbol replaced by a randomly chosen slice).

9.2.3 Fitness function

In order to understand how our micro- and meso-patterns interact in the
search space we implemented three fitness functions (FF 1-3). The fitness
functions were designed in the following way; FF1) a simple uniform re-
ward value for every unique pattern, FF2) a simple uniform reward value for
every occurrence of patterns, and finally FF3) a non-uniform reward weighted
value for every occurrence of patterns. The first fitness function worked as a
validation of the strings indicating that they could be found (i.e. more than
one out of our meso-patterns can be found). The second fitness function
was used to explore the frequency of how meso-patterns “appear” in the
search space (i.e. how common are the different meso-patterns). The third

9.3 results and evaluation 119

fitness function was used to explore how the use of weighted values affects
the frequency of meso-patterns.

In order to have some input on the weights to use we chose a simple
strategy of calculate a weight by inverting the average occurrence of the
patterns giving an infrequent pattern a high weight and a frequent pattern
a low weight. By doing so, we propose that we can counter the effect of nor-
mal distribution while picking random symbols during the task of initiating
and mutating the members of the population. Another issue this strategy
would counter, is the varying complexity that the individual patterns have.
If we would continue to use a uniform reward strategy for the fitness func-
tion, complex strings would run a greater risk to be starved to death in our
population due the space it takes over uncomplicated patterns (i.e. short
patterns are easily fitted into a member in relation to a long pattern). In
order to find different variations of the patterns we designed a set of 43

strings of symbols in different categories of the patterns (i.e. 5 categories
of patterns and 23 patterns [48]). These strings, (which we will refer to as
rules) were used for a simple linear search, covering each member of the
population in each generation.

9.3 results and evaluation

We performed the experiments in three stages. First, we evolved a large
number of levels using the “unique patterns” version of the evaluation func-
tion (FF1). We then repeated this experiment using the “all occurrences”
version of the evaluation function (FF2). Based on these runs, we evaluated
which micro-patterns were most commonly used, and which meso-patterns
were most commonly found. These evaluations were used to calculate the
weights for a weighted version of the fitness function (FF3). The third and
final experiment, using the weighted version of the evaluation function,
aimed to see if we could bring about that all patterns were found in a
more balanced way.

120 paper 3 – pcg using patterns as objectives

9.3.1 Finding patterns

Table 14: Fitness value variation for 1000 levels counting fitness value based on rules;
only one occurrence (FF1), multiple occurrences (FF2) and weighted mul-
tiple occurrences (FF3).

Generations MIN MAX MEAN DEV. MED.

0 (FF1) 3 8 4.61 0.81 5

10 (FF1) 5 11 7.47 1.02 7

100 (FF1) 8 27 14.94 2.51 15

500 (FF1) 8 31 18.18 3.17 18

1000 (FF1) 9 31 18.97 3.23 19

0 (FF2) 4 10 5.7 1.12 6

10 (FF2) 7 18 11.17 1.74 11

100 (FF2) 13 86 36.98 10.46 37

500 (FF2) 16 183 68.62 30.17 63

1000 (FF2) 18 227 82.17 37.38 73

0 (FF3) 4 202 77.83 36.16 77

10 (FF3) 8 301 121.92 62.83 118

100 (FF3) 20 1030 264.07 149.64 241

500 (FF3) 34 2361 430.33 348.98 337

1000 (FF3) 34 2449 486.20 401.76 374

For each fitness function, we made 1000 independent runs and recorded
the fitness values based on the strings. The fitness value worked as a simple
"count a rule when it is fulfilled", but only the first time it occur in a level
for FF1, for every time it occurred in FF2 and with weighted values in FF3.
We can see that the evolutionary approach manages to find more meso-

9.3 results and evaluation 121

patterns over time. In order to measure the effect of our efforts of guiding
the evolution to find more elaborate patterns we recorded which rules were
present in the best member out of our 1000 runs (see tables 15-20).

Measuring the occurrences of a rule in large population should give an in-
dication on how complicated it is to generate an instance of a meso-pattern
(rule) in relation to the micro-patterns. Several of the meso-patterns use the
same micro-patterns and since the micro-patterns initial occurrence is based
on equal chance to be present in the population and a member we can be
certain that, given enough time, the search-based approach will affect the
distribution of micro-patterns.

Table 15: Found patterns (rules) in FF1-FF3 together with the calculated weight for
FF3 based on 1000 runs.

Pattern Mesa Straight

Occurrence in FF1 682 686 1001

Average in FF1 0.68 0.69 1.00

Occurrence in FF2 498 480 523

Average in FF2 0.5 0.48 0.52

Weight 2.01 2.08 1.91

Occurrence in FF3 1042 1118 1317

Average in FF3 1.04 1.12 1.32

For FF1, the distribution of fulfilled rules show promise on only 12 of the
rules (with occurrence value of 845–2605) and all rules have been fulfilled.
However, this is not sufficient to answer the question on how easy they
are to find in relation to each other. It is possible that the more complex
rules are starved to death in an evolutionary search. In order to explore this
we ran FF2 and counted multiple occurrences. The effect of counting mul-
tiple instances gives the conclusion that Enemies and Hordes starves most
other rules (except two instances of Multi-way and only mildly two other
Multi-way). Problematically as it is, we apply weights for FF3 to counter the

122 paper 3 – pcg using patterns as objectives

Table 16: Found patterns (rules) in FF1-FF3 together with the calculated weight for
FF3 based on 1000 runs.

Pattern Multi-way

Occurrence in FF1 239 193 50 93 68 193 168 239 197 132 136

Average in FF1 0.24 0.19 0.05 0.09 0.07 0.19 0.17 0.24 0.20 0.13 0.14

Occurrence in FF2 25 83 221 329 11 83 37 25 13 120 127

Average in FF2 0.03 0.08 0.22 0.33 0.01 0.08 0.04 0.03 0.01 0.12 0.13

Weight 40 12.05 4.53 3.04 90.91 12.05 27.03 40 76.92 8.33 7.87

Occurrence in FF3 574 264 317 40 559 264 298 574 589 697 687

Average in FF3 0.57 0.26 0.32 0.04 0.56 0.26 0.30 0.57 0.59 0.70 0.69

Table 17: Found patterns (rules) in FF1-FF3 together with the calculated weight for
FF3 based on 1000 runs.

Pattern Enemy

Occurrence in FF1 2605 1198 572 2606 1208 525

Average in FF1 2.61 1.20 0.57 2.61 1.21 0.53

Occurrence in FF2 13751 10411 1897 13584 8678 722

Average in FF2 13.75 10.4 1.9 13.6 8.68 0.72

Weight 0.07 0.1 0.53 0.07 0.12 1.39

Occurrence in FF3 444 50 8 444 33 16

Average in FF3 0.44 0.05 0.01 0.44 0.03 0.02

9.3 results and evaluation 123

Table 18: Found patterns (rules) in FF1-FF3 together with the calculated weight for
FF3 based on 1000 runs.

Pattern Hordes Gaps

Occurrence in FF1 920 931 1007 1007 892 111 286 269 286

Average in FF1 0.92 0.93 1.01 1.01 0.89 0.11 0.29 0.27 0.29

Occurrence in FF2 3694 4995 8209 8209 3563 14 83 68 132

Average in FF2 3.69 5 8.21 8.21 3.56 0.01 0.08 0.07 0.13

Weight 0.27 0.2 0.12 0.12 0.28 71.43 12.05 14.71 7.58

Occurrence in FF3 0 90 93 93 0 1720 44 33 88

Average in FF3 0.00 0.09 0.09 0.09 0.00 1.72 0.04 0.03 0.09

Table 19: Found patterns (rules) in FF1-FF3 together with the calculated weight for
FF3 based on 1000 runs.

Pattern Valley Stair

Occurrence in FF1 87 81 61 845 846 664 705 716

Average in FF1 0.09 0.08 0.06 0.85 0.85 0.66 0.71 0.72

Occurrence in FF2 17 14 17 355 352 257 289 287

Average in FF2 0.02 0.01 0.02 0.36 0.35 0.26 0.29 0.29

Weight 58.82 71.43 58.82 2.82 2.84 3.89 3.46 3.48

Occurence in FF3 193 178 162 1233 1197 1110 915 1025

Average in FF3 0.19 0.18 0.16 1.23 1.20 1.11 0.92 1.03

124 paper 3 – pcg using patterns as objectives

Table 20: Found patterns (rules) in FF1-FF3 together with the calculated weight for
FF3 based on 1000 runs.

Pattern Pipes

Occurrence in FF1 66 47 43 46 61 67

Average in FF1 0.07 0.05 0.04 0.05 0.06 0.07

Occurrence in FF2 28 14 9 14 8 10

Average in FF2 0.03 0.01 0.01 0.01 0.01 0.01

Weight 35.71 71.43 111.1 71.43 125 100

Occurence in FF3 5 43 57 12 966 30

Average in FF3 0.01 0.04 0.06 0.01 0.97 0.03

multiple-occurrence starvation effect. The weights were calculated as the in-
verse function (1x when x 6= 0) of the average occurrence. The result for FF3

show positive effect for most of the meso-patterns (26 out of the 43 rules)
except for the Gaps-, Enemy- and Horde-patterns for which the result, on
the other hand, is absolute catastrophic (in tables 15-20 the negative change
is indicated in italic).

9.4 expressive range

Smith & Whitehead [202] introduced the concept of expressive range of a
level generator and suggested a set of possible metrics that illustrates diver-
sity of the generated content. For PCG-tools it is interesting to show if the
tool is able to generate content that is not identical. Linearity and Leniency
were suggested as metrics for platform levels.

We have implemented versions of these metrics thus: Leniency is calcu-
lated across the whole level with +1 for gaps and enemies, and the reverse
for the opposite −1 (for jumps with no gap associated, because jumps as-
sociated with danger is harder than jumps without danger). Linearity will
be counted from the lowest point of the level, due to the fact that most mi-

9.4 expressive range 125

Figure 35: The distribution of levels generated with FF1 on the two expressivity
dimensions.

126 paper 3 – pcg using patterns as objectives

cro patterns are connected to that and therefore all micro patterns forcing
the player to jump due to a height difference of more than 1 tile will be
considered as raising the non-linearity of the level.

Figure 36: The distribution of levels generated with FF2 on the two expressivity
dimensions.

In figure 35, 36 and 37 we show a density plot based on the two metrics;
leniency (LEN) and linearity (LIN) with 1000 generated levels for the fitness
functions 1, 2 respectively 3 (FF1-3). FF1 have an expressive range in LEN
of −75 to +50 with a concentration of levels around −20 to ±0 as well as an
expressive range in LIN of −20 to +130 with a concentration in the range
+50 to +100. FF2 gives LEN: −75 to +100 and LIN: −20 to +170. FF2 has
two clusters; LEN/LIN −75 to −25/± 0 to +50 and −25 to 30/+ 85 to 160.
Comparing the two fitness functions (FF1 & FF2) expressiveness yields that
FF2 can generate both more difficult and more linear levels. The correlation
that may exist is due to the gap and enemy placement in linear space in
SMB (and in the micro-patterns) and it is more apparent due to the higher

9.4 expressive range 127

alignment to meso-patterns in FF2 than in FF1, which is more affected by
the normal distribution in the variation of micro-patterns and get a less
apparent cluster and range. FF3, however differ on all ranges; LEN: −105

Figure 37: The distribution of levels generated with FF3 on the two expressivity
dimensions.

to +80 & LIN −50 to +160. The two clusters; LEN/LIN: −100 to −30/− 25

to +25 and −30 to +20/+ 50 to 130, are less apparent divided from each
other and most of the individual members are not spread out as thin as
before. The weighted fitness value gives a wider expressive range but the
levels are more close if we observe the outliers suggesting that we could say
that the expressive spread is affected with weighted patterns. The levels are
more easy but also less linear. This is no surprise due to the low presence
of meso-patterns of Gap-, Enemy- and Horde-type.

128 paper 3 – pcg using patterns as objectives

Figure 38: An example of a generated level.

9.5 discussion

Our approach could be viewed from a level designer’s standpoint if we see
the design process as handled by our three pattern levels; 1) at the micro-
level, which contain the smallest representation level, in our approach the
vertical slices function, 2) at the meso-level, where the combined slices in a
certain order function to solve the challenges the designer wants to expose
to the players to, and 3) at the macro-level handling the flow and overall
(play-)experience of a level and/or game. If we implemented a planner that
solved the issue of deciding on order of meso-patterns, difficulty (perhaps
with the aid of metrics like leniency), training and educating the player, the
full task of the level-designer, namely; to “... use a toolkit or ‘level editor’
to develop new missions, scenarios, or quests for the players. They lay out
the components that appear on the level or map and work closely with the
game designer to make these fit into the overall theme of the game” [78],
could be solved for an entire game or genre.

In our fitness functions FF2 and FF3, we used weighted sums of the
meso-pattern counters. There are well-known problems with fitness func-
tions based on weighted sums, in particular that not all components are
maximised at the same rate. An alternative would be to treat the problem
as a multi-objective optimisation problem, and use specially designed evo-
lutionary algorithms for this purpose. However, most such algorithms are
designed for only a handful of objectives, which is problematic as our prob-
lem has dozens.

9.6 conclusion 129

9.6 conclusion

In this paper, we have introduced a pattern-based level generator for plat-
form games. The general principle is to identify both micro-patterns and
meso-patterns in the original game levels, represent new levels as combi-
nations of micro-patterns and search for such combinations that express as
many meso-patterns as possible. This way, micro-patterns are used as build-
ing blocks and meso-patterns as objectives. This principle, and the generator
based on it, can easily be extended to a large range of different game types
and game content types. To validate and explore the workings of our proto-
type level generator, we ran experiments with three different variations of
our fitness function. We found that the generator could easily find certain
patterns whereas others where harder to find, but that a rebalancing made
it possible to find other patterns, sometimes at the cost of more frequent
patterns.

9.7 acknowledgments

We would like to thank Noor Shaker for the generated level image.

notes

22The benchmark is based on the clone Infinite Mario Bros by Markus “Notch” Persson.

10PA P E R 4 – A M U LT I - L E V E L L E V E L G E N E R AT O R

abstract

Generating content at multiple levels of abstraction simultaneously is an
open challenge in procedural content generation. Representing and auto-
matically replicating the style of a human designer is another. This paper
addresses both of these challenges through extending a previously devised
methodology for pattern-based level generation. This method builds on an
analysis of Super Mario Bros levels into three abstraction levels: micro-,
meso- and macro-patterns. Micro-patterns are then used as building blocks
in a search-based PCG approach that searches for macro-patterns, which
are defined as combinations of meso-patterns. Results show that we can
successfully generate levels that replicate the macro-patterns of selected in-
put levels, and we argue that this constitutes an approach to automatically
analysing and replicating style in level design.

published in

Proceedings of the 2014 IEEE Conference on Computational Intelligence and Games

IEEE c©2014

IEEE. Reprinted, with permission, from Steve Dahlskog and Julian Togelius, A multi-

level level generator, 2014 IEEE Conference on Computational Intelligence and Ga-

mes, and Aug/2014

ISSN: 2325-4270 doi: 10.1109/CIG.2014.6932909

131

A M U LT I - L E V E L L E V E L G E N E R AT O R

10.1 introduction

Procedural content generation in games (PCG) refers to the algorithmic cre-
ation of game content, with no or limited human input. Recent years has
seen a marked increase in interest in PCG in the game development com-
munity, where it is now routinely used both for runtime level generation
in certain types of games (e.g. rogue-likes) and for offline generation of cer-
tain types of content, such as vegetation and terrains. This development is
paralleled by a significant increase in PCG research in academia. Unlike in
commercial game development, the focus tends to be on more ambitious
forms of PCG than what is currently seen in released games, and using
more complex methods [231].

In a recent overview paper, a number of long-term goals and research
challenges for PCG are described [229]. The paper suggests the following
grand goals of PCG: Multi-level Multi-content PCG, PCG-based Game Design
and Generating Complete Games. It is argued that work addressing any of
its nine more concrete research challenges would contribute to progress to-
wards realising these grand goals of PCG. Further, five very concrete action-
able steps are listed, each of which is envisioned to address one or several
of the research challenges.

In this paper, we address two of the research challenges, namely Repre-
senting Style and General Content Generators, and one of the actionable items,
namely Competent Mario Levels. Representing Style refers to being able to
create a generative model of the style of a particular designer or a particular
design school, whereas General Content Generators refers to being able to
generate either different types of content (on different levels of abstraction)
for a single game or content for multiple games. The Competent Mario Lev-
els actionable step refers to creating level generators for Super Mario Bros

133

134 paper 4 – a multi-level level generator

that can create varied, interesting, good-looking, playable and entertaining
levels.

The way we address these challenges is to extend an existing pattern-
based level generator for Super Mario Bros. In previous work, we have
described a method which builds levels for Super Mario Bros out of “micro-
patterns”, i.e. thin level slices, and uses an evolutionary algorithm to search
for levels that contain multiple instances of “meso-patterns”, which are
larger designed structures [48, 49, 51]. It was observed that while this met-
hod generated playable levels with interesting micro-structure, the levels
lacked a sense of progression, unity or other macroscopic properties. The
working hypothesis of this paper is that such macroscopic structure can be
achieved with an extension of this method by using objectives at a higher
abstraction level. This in turn requires that such objectives can be extracted
from existing game levels.

10.1.1 Contributions in this paper

In previous work, we have identified meso-patterns in Super Mario Bros
[48], and devised a search-based approach to level generation in the Ma-
rio AI Benchmark where micro-patterns are used as building blocks and
meso-patterns as objectives [49, 51]. In this paper, we introduce a third le-
vel of abstraction, macro-patterns, defined as the occurrence and sequence
of meso-patterns. We also describe a level analyser, which extracts patterns
from existing levels. Finally, we describe the results of experiments in evolv-
ing levels using macro-patterns as objectives. For this purpose we have also
devised a new mutation operator for game levels based on cutting and past-
ing micro-patterns.

10.2 background

Our work builds on previous work in both design-oriented and technical
game research. Here, we describe previous work on PCG in games, design

10.2 background 135

patterns, and the combinations of these, and we also present the benchmark
game used for the experiments.

10.2.1 Procedural content generation in games

Game content refers to any game asset excluding non-player characters,
(NPCs) behaviour and the game engine - for example levels, rules, textures,
narrative and in-game items. PCG has recently attracted considerable inter-
est in the digital game research community, as evidenced by hundreds of
publications and the establishment of a dedicated workshop running an-
nually since 2010. This is at least partly due to there being multiple good
reasons to attempt to create algorithms that generate content, including: re-
ducing the cost and time of game development, enabling infinite and/or
adaptive games, studying game design by formalising human creativity,
and attempting to surpass such creativity. In the current context, we are
interested both in the computational study of game design, and in creat-
ing fast algorithms that can reliably supply a game with large amounts of
quality content.

The last few years has seen a surge of interest in an approach to PCG
called search-based PCG, where evolutionary algorithms or other global
stochastic optimisation algorithms are used to generate content [228]. The
two most important considerations here are content representation (how
the genotype, e.g. levels, is represented as a phenotype, e.g. vectors of inte-
gers, on which the variation operators work) and content evaluation (how
a fitness value is assigned to a content artefact).

10.2.2 Design Patterns

Design patterns were initially proposed by Alexander [7], an architect who
created them with the intent to empower individuals to express their ability
to design. Design patterns are basically a rather informal grammar contain-
ing a set of descriptions covering reoccurring design problems in a domain.
This problem description is paired with a suggested core solution which

136 paper 4 – a multi-level level generator

could be reused. In effect, the second of the two components (problem &
solution) is very versatile due to the generalisation of the solution space. De-
sign patterns have been adopted in object-oriented analysis and design [82],
and thinking of software architecture in terms of design pattern solutions
has become very influential. Björk and Holopainen later applied the ideas of
design pattern to game design, listing hundreds of generic game design pat-
terns in an influential book [30, 29]. Several authors have further identified
a number of game design patterns in specific game genres [102, 41, 126, 64].

In the current paper we are principally interested in patterns in level de-
sign, where levels are the structures that the player character traverses (not
to be confused with e.g. levels of abstraction). Given the fact that games
often are designed artefacts put together with a purpose, several aspects of
them can be viewed as structures. For instance, rules govern the process
of play, whereas levels and game space is often indirectly controlling the
movement of the player, and objects in games usually have a specific pur-
pose effectively limiting their use for the player. In relation to this, we could
view the content in a platform game (including levels) as structured design
objects, i.e. objects following design patterns.

10.2.3 Benchmark game

In this paper we will use the game Super Mario Bros. (SMB) [158] as a
benchmark. The game was first released by Nintendo in 1985, and is a side
scrolling 2-dimensional “platformer” game. SMB has become very influen-
tial through setting a number of standards for the platformer genre, and
has helped bring about the genre’s popularity. In the game, the protagonist
Mario (or his brother Luigi) moves from left to right, jumping onto plat-
forms or other structures to overcome obstacles or onto enemies to squash
them. SMB consists of 8 worlds, each containing 4 levels, where the three
first levels span from a starting point (left-most) to the end by a castle en-
trance (right-most) and the fourth level ends in a “boss-fight”. As there is
no interface for NPC control or level generation in the original game, we
build on the Mario AI Framework, a software toolkit which was developed

10.3 level design patterns in mario 137

for the Mario AI Competition [223, 190, 113]. This software is based on Infi-
nite Mario Bros, a clone of SMB that focused on the non-“boss-fight”-levels.
In SMB the levels have a varied length of 148 to 377 with an average of 200

tiles. Various approaches to generate levels for the Mario AI Framework
have been proposed, as surveyed in [190, 101]; approaches that explicitly
copy the style of SMB levels include Markov chains [211].

10.3 level design patterns in mario

We have previously analysed the content of the original game with the aid
of a framework for 2D Platformer games [203] and heuristics for playabil-
ity [55] and suggested a set of (meso-) patterns that SMB levels consists
of [48]. We identified patterns on two levels, micro-patterns and meso-
patterns. Micro-patterns are simply vertical slices of the level. Meso-pat-
terns are features such as groups of enemies, gaps to jump over, valleys
boxing in parts of the level, allowing the player to choose multiple paths
and elevating Mario with the aid of stairs. In this paper, we also introduce
macro-patterns, which are sequences of meso-patterns.

10.3.1 Micro-patterns

Figure 39: To the left we have a excerpt from SMB World 1–Level 1 which can
be replicated with only two micro-patterns (slices) marked with black
frames to the right. It also exemplifies a 2-Path pattern.

138 paper 4 – a multi-level level generator

The content in SMB can be viewed from Mario’s standpoint, namely, hor-
izontally from left to right one tile at the moment. If one imagine the levels
as one tile wide slices and collect them in a library, the first level, even
though it is 199 slices “long” only 27 different slices are used. These slices
could be viewed as micro-patterns since they, in themselves, are designed
content, and they often contain several pieces put together like a Goomba,
a question-mark-box, a brick-block or something else that is either an obsta-
cle, or aid to the player. In fig 39, the left-most slice or micro-pattern contain
mostly empty space (allowing Mario to jump) but also to land on a Goomba
or a ground-tile. If Mario were to walk into this slice the player either loses
a life or a power-up effect. These micro-patterns works in a similar way as
the tiles when decomposing the problem of generating dungeons [141].

Figure 40: Examples of similar but still unique slices. The two to the right can be
used to create the structure of Fig. 39 and a sub-set of them can be used
to create most of Fig. 42

10.3.2 Meso-patterns

The next meaningful level are the meso-patterns. These are perhaps best
explained as instances of the different patterns previously identified [48]. A
meso-pattern is a feature which requires or affords some player action, like
three Goombas walking in a single file formation on ground. If the micro-
patterns are to be seen from Mario’s viewpoint, the meso-patterns could

10.3 level design patterns in mario 139

Figure 41: Two meso-patterns (to the left; a sparse Risk and Reward (W1L1) and to
the right a dense 3-Path (W4L1).

be viewed more like how the player sees the content: sequences of slices
making up most of a screen.

It is important to note that meso-patterns are a bit more abstract than
micro-patterns; each meso-pattern could be instantiated in multiple ways,
by different configurations of micro-patterns. For example, a valley could
consist of 5 or 10 slices, but still be a valley. If our micro-patterns are iden-
tified by an integer then a meso-pattern is a string of specific integers like
5− 1− 1− 7 or 1− 8− 8− 5− 8− 123. (These particular strings are taken
from the original game.)

10.3.3 Macro-patterns

Figure 42: A Macro-pattern example from SMB, stretching over two screens, where
a 2-Path and a Gap continues on to a Risk and Reward and a Gap onto a
3-Path with an end consisting of a 2-Horde.

140 paper 4 – a multi-level level generator

The meso-patterns are helpful to understand the content of SMB but does
not convey more macroscopic level structure. For that we suggest a higher
level – the macro-pattern level. On this level the relation between different
meso-patterns becomes clear and the placement of individual power-up-
mushrooms can balance difficulties that lies beyond the current screen. In
figure 42 we can see an example of how patterns are connected together
over more than one screen. At this level of abstraction the level designer can
provide the player with a greater play experience by providing a steady and
controlled difficulty curve, teach the player how to tackle new obstacles and
enemies. “Pedagogic” macro-patterns, where a meso-pattern first appears
in a simpler form and then in a more complex form, so that the player
can first overcome the simpler challenge to then be ready to face a harder
challenge of the same type, are common among the original SMB levels.
Story arcs could be partly implemented, or at least supported, on the macro-
level as well. Given this, it might be possible to argue for further abstraction
levels covering the “Worlds” of SMB or perhaps the full game or even the
whole game franchise.

For example, if we describe the first level of SMB, i.e. World 1–Level 1

(W1L1, see Fig. 43) as a sequence of meso-patterns we get the following:
Risk and Reward, (Empty) Pipe valley, (2-Horde) Pipe Valley, 2-Path, Gap, Risk
and Reward, 2-Horde, Risk and Reward, Risk and Reward, (Empty) Stair valley,
(Gap) Stair valley, Roof valley, Stair up.

Figure 43: Level 1, World 1 from the original Super Mario Bros game, reimple-
mented in the Mario AI Framework (SMB-W1–L1).

Figure 44: Level 1, World 8 (SMB-W8–L1) (mid 200 tiles, start and ending empty
ground is cropped).

10.4 pattern-based level generation 141

10.3.4 Multi-Level Level Generation

In our suggested approach we utilise a “bottom-up”-approach where the
micro-level is the foundations for the meso-level which in turn makes up
the macro-level. Our method is a search-based PCG approach [228], described
below.

10.4 pattern-based level generation

We have previously presented two level generators for the Mario AI Frame-
work that builds on the identified patterns. The first of these was a simple
constructive pattern-based level generator that combined pre-fabricated in-
stances with minor variations depending on assigned parameters on diffi-
culty and reward settings [48]. The second generator takes a search-based
approach, with a representation based on micro-patterns and objective func-
tion based on the existence and number of meso-patterns [49]. Two versions
of the fitness function were developed: one which simply counted every oc-
currence of every meso-pattern, and one which only counted the number of
individual meso-patterns that could be found in the level. It was found that
levels that scored highly on either of these metrics were perceived as better-
designed than those that scored lower, but also that those that were only
optimised for the first variation (every occurrence) became rather dense.
After further experimenting [51] with its multi-objective fitness functions,
we here extend it to cover the macro-pattern level as well.

10.5 automatic level analysis

In order to be able to generate levels that replicate the sequence of meso-
patterns from existing levels, we first need to be able to extract this sequence.
For this purpose we built a level analyser. The level analyser takes any
Super Mario Bros (or Infinite Mario Bros) level encoded in a specific simple
file format and returns a list of all the micro-patterns (slices) in the level
and their frequencies, and the order of all meso-patterns. This is technically

142 paper 4 – a multi-level level generator

an array of integers where each integer represents a particular meso-pattern
out of those identified in [48], but can be read out as e.g. “{pipe-valley, three-
horde, three-horde, stair}” etc. The same pattern detection code is used here
as is used in the objective functions.

10.6 methods

In this section we stepwise go through our approach, by stating the princi-
pal parts; representation, algorithm and fitness function.

10.6.1 Representation

Our level generator output is a single SMB level with the length of 200

and a height of 14 tiles. The internal representation of a level is an array
of integers, where each integer represents a micro-pattern (see Fig. 40 for
examples).

10.6.2 Evolutionary Algorithm

Our search-based approach uses a fitness function that rewards the pres-
ence of meso-patterns with a simple µ + λ evolution strategy where µ =

λ = 100 combined with the operators single-point mutation and one-point
crossover. This means, when we use a population of 200 members, that we
discard the 100 members with lowest fitness and use the best 100 members
as parents for breeding pairwise. All of the newly generated offspring are
also subject to mutation. We consequently deem members with unplayable
content as unfit for breeding by setting their fitness value extremely low.

10.6.3 Variation operators

In previous work our mutation operator simply exchanged a single micro-
pattern for another, randomly selected [51]. Given the relative length of a

10.6 methods 143

Figure 45: A comparison between the effect of the mutation-operators.

micro-pattern (1 slice = 1 block), in relation to a full level in SMB (148-377

slices) and the nature of our initial mutation operator; exchanging a single
slice for another for the whole member (meaning a mutation effect of 0.5%
out of 200 slices) we opted to incorporate a more aggressive mutation (blue
line in Fig. 45). Instead of the minimalistic mutation operator working as an
exchange of a single slice exchange (red line) we apply a sequence exchange.
The new mutation operator change a set of five slices at a random starting
position with a new random set of five slices.

144 paper 4 – a multi-level level generator

10.6.4 Fitness functions

Our fitness functions measure the presence and order of patterns and are
based on string search. A fitness value is assigned to each level based on
the presence of specific sub-strings representing meso-patterns taken from
SMB. A sub-string is typically seen in Fig. 39 made up with micro-patterns
(see Fig. 42). Since these sub-strings vary in length and complexity some
patterns are harder to find in the solution space than others. This, in turn,
yields that we need to understand how to define the fitness function ac-
cording to the wanted outcome. We focus our attention on the difference
between finding all patterns we have defined in solution space (with the fit-
ness function FFMeso) without rewarding any specific pattern over another.
From there we utilise a weighted value based on previous experiments [51]
(called FFMesoB[alanced]) in order to understand the effect of the added
macro-level works in the solution space (called FFMacro). FFMacro is based
on a relative reward value so that it rewards the correct order of meso-
patterns according to the original SMB meso-pattern order in addition to
how FFMesoB reward sub-strings. In short, if the order of meso-patterns
in a member corresponds to the one in the target level it is more probable
that it is chosen for breeding. Note that we are only looking for instances
of meso-patterns and not the exactly same pattern implementations as in
SMB.

10.7 results

Our experiments are evaluated in three ways: (1) We measure the meso-
pattern (type and how many) for the best member of a 1000 generation
search (200 members with the length of 200 micro-patterns); (2) we compare
the fitness values distribution for the fitness functions; and (3) we apply
expressive range analysis (see section 10.7.2).

In order to get some input on diversity aspects of the different fitness
functions we have generated 100 levels for each fitness function and com-
pare them to each other. FFMeso favours simple patterns like enemies and

10.7 results 145

hordes and seldom provide anything more complex like multi-way and
pipes. FFMesoB and FFMacro provide better overall coverage of patterns.
FFMesoB and FFMacro does not differentiate very much but generally FF-
Macro provide some improvements on longer patterns (indicated in italic
in tables 23–28).

FFMeso generally perform uniform values. It should be noted that since
this fitness value favours low ranked rewards and is then compared to the
weighted macro fitness function very little variation is gained (see Tables 23–
28 to see the pattern distribution) it should not be directly compared value
by value with the other two fitness functions which are more compatible
in regard to comparison. In that aspect both fitness functions can generate
macro-pattern ordered in a level but FFMacro perform a bit better reaching
a macro-pattern fulfilment of a maximum 7/12 and a common level of 4/12
whereas FFMesoB only reaches 6/12 (see Table 29). FFMesoB has a higher
maximum altogether because it can fit in more high value patterns in the
level. FFMacro tries to find the right pattern there which could be improved
by rewarding macro pattern order more, but of course then running the risk
of starving the meso-patterns altogether.

Figures 49a show a number of generated levels for visual comparison.
These were all generated with level 1-1 (as seen in figure 43) as target level.
It can be seen from these pictures that the levels generated with the Macro
fitness function appear to have more large-scale structure, or at least more
variation on the macro scale.

10.7.1 Efficiency

FFMeso and FFMesoB can run in fair online environments generating a
level with the length of 200 based on a 200 member population and 1000

generations in 4 seconds with the current implementation in Java running
in NetBeans IDE on a 2011 MacBook Pro. However, the FFMacro, have to
account for relative reward values and an extra data structure (that keeps
track of the order in relation to the wanted order) which affects execution

146 paper 4 – a multi-level level generator

time tenfold effectively placing this approach in the offline PCG application
range.

10.7.2 Expressive Range

The concept of expressive range could be seen as the approach to visualise
and measure the variation of the generated content according to a repre-
sentative metric [202, 101]. This would allow understanding the diversity
and uniqueness of a level generator. In our case we will apply Smith’s &
Whitehead’s metrics Linearity and Leniency [202].

Figure 46: The distribution of levels generated with FFMeso on the two expressivity
dimensions.

Our implementation works as follows; Leniency is calculated across the
whole level with +1 for gaps and enemies, and −1 for jumps without dan-
ger. Linearity will be counted as +1 for any change from the floor of the
level, due to the fact that most micro patterns is connected to that. In Fig. 46

the output of FFMeso and in Fig. 47 the output of FFMacro are displayed
using 100 unique levels from the two different fitness function used.

10.7 results 147

Figure 47: The distribution of levels generated with FFMacro on the two expressivity
dimensions.

Comparing the FFMacro and FFMeso we can see that they occupy a differ-
ent expressive space with FFMeso generating levels more similar internally
than the other two fitness functions. FFMeso has a linearity range of 80
and leniency range of 80 whereas FFMacro has 75 and 105 for linearity and
leniency respectively. Comparing their (FFMeso and FFMacro) individual
space we can see there is very little overlap in their expressive range.

Given this (see Fig. 48) we can conclude that the Linearity of the FFMesoB
and FFMacro are more variated but also less hard to complete (probably
due to the lower number of enemies present in these levels see tables 23–
28). However, since the distribution of different patterns are more like the
original game SMB the FFMesoB and FFMacro are probably more interest-
ing for a player.

148 paper 4 – a multi-level level generator

Figure 48: The distribution of levels generated with FFMeso, FFMesoB and FFMacro
on the two expressivity dimensions.

10.8 future work

Given the set of generators available to the PCG-research-community more
in dept studies of the diversity of the different approaches would yield
welcome knowledge. For instance, how well does the generator fulfil the
intended goal and how does that relate to other generators abilities. Can
we, with the use of metrics or empirical tests order the different generators
on a spectra ranging from variation to control? Does implementation of
different but similar techniques place generators close to each other on that
spectra?

10.9 conclusion 149

Considering the multi-level search-based and bottom-up-approach ap-
plied in this paper it would be interesting to compare it with other possible
approaches for multi-level generators. Especially, top-down and construc-
tive approaches would be a welcome comparison. The top-down approach
could function in different ways, ranging from a more automated version
were the user supplied parameters and the generator suggested levels to
a more user centred approach where the designer marked our space in a
level and picked pattern definitions and placed them in an order suited to
the designer and mixing designer work with constraints on the generator to
fulfilling patterns and even down to level where the designer defines new
meso- and micro-patterns.

10.9 conclusion

In this paper we have suggested a search-based PCG method and level gen-
erator for platform games that incorporates three levels of patterns, namely;
1) micro-, 2) meso- and 3) macro-patterns. These three levels handles differ-
ent aspects of the level generation ranging from low level detail to full level
overview. To demonstrate the effect the multi-level level generator we ran
a set of experiments with three different fitness functions; FFMeso (reward-
ing meso-patterns), FFMesoB (a balanced version using weights derived
from a previous version [51]) and FFMacro (using the same weights but
with an added extra reward if the order of the patterns we in alignment to
the original SMB game). During this exploration of the solution space we
noted that some patterns are affecting the presence of other patterns and
that the expressive range can vary based on the used fitness function. The
added macro-level have increased the run-time of the level generator ten-
fold making the generator more suitable for offline generation rather than
online.

150 paper 4 – a multi-level level generator

(a) FFMacro #26 MC: 4, fitness value: 441 (lowest).

(b) FFMacro #28 MC: 6, fitness value: 1315.

(c) FFMacro #35 MC: 0, fitness value: 850.

(d) FFMacro #82 MC: 7, fitness value: 1485.

(e) FFMacro #98 MC: 6, fitness value: 2332 (highest).

Figure 49: FFMacro levels.

(a) FFMesoB #6 MC: 0, fitness value: 545.

(b) FFMesoB #30 MC: 3, fitness value: 409 (lowest).

(c) FFMesoB #64 MC: 6, fitness value: 2065 (highest).

Figure 50: FFMesoB levels.

notes 151

(a) FFMeso #42 MC: 2, fitness value: 202 (highest).

(b) FFMeso #99 MC: 0, fitness value: -47 (lowest).

Figure 51: FFMeso levels.

notes

23The last string is for instance seen in Fig. 39

152 notes

Table 21: Patterns for Super Mario Bros. grouped by theme part 1 [48].

Enemies

Enemy A single enemy

2-Horde Two enemies together

3-Horde Three enemies together

4-Horde Four enemies together

Roof Enemies underneath a hanging platform making
Mario bounce in the ceiling

Gaps

Gaps Single gap in the ground/platform

Multiple gaps More than one gap with fixed platforms in between

Variable gaps Gap and platform width is variable

Gap enemy Enemies in the air above gaps

Pillar gap Pillar (pipes or blocks) are placed on platforms be-
tween gaps

Valleys

Valley A valley created by using vertically stacked blocks
or pipes but without Piranha plant(s)

Pipe valley A valley with pipes and Piranha plant(s)

Empty valley A valley without enemies

Enemy valley A valley with enemies

Roof valley A valley with enemies and a roof making Mario
bounce in the ceiling

notes 153

Table 22: Patterns for Super Mario Bros. grouped by theme part 2 [48].

Multiple paths

2-Path A hanging platform allowing Mario to choose dif-
ferent paths

3-Path 2 hanging platforms allowing Mario to choose dif-
ferent paths

Risk and Reward A multiple path where one path have a reward and
a gap or enemy making it risky to go for the reward

Stairs

Stair up A stair going up

Stair down A stair going down

Empty stair valley A valley between a stair up and a stair down with-
out enemies

Enemy stair val-
ley

A valley between a stair up and a stair down with
enemies

Gap stair valley A valley between a stair up and a stair down with
gap in the middle

Table 23: Found patterns (rules) in FFMeso, FFMesoB and FFMacro based on 100

levels and 1000 generations per level.

Pattern Mesa Straight

OCC. in FFMeso 16 11 132

AVG. in FFMeso 0.16 0.11 1.32

OCC. in FFMesoB 50 50 61

AVG. in FFMesoB 0.5 0.5 0.61

OCC. in FFMacro 28 55 57

AVG. in FFMacro .28 0.55 0.57

154 notes

Table 24: Found patterns (rules) in FFMeso, FFMesoB and FFMacro based on 100

levels and 1000 generations per level.

Pattern Multi-way

OCC. in FFMeso 4 3 3 1 0 3 2 4 1 2 1

AVG. in FFMeso 0.04 0.03 0.03 0.01 0 0.03 0.02 0.04 0.01 0.02 0.01

OCC. in FFMesoB 131 39 7 2 90 39 39 131 141 51 53

AVG. in FFMesoB 1.31 0.39 0.07 0.02 0.9 0.39 0.39 1.31 1.41 0.51 0.53

OCC. in FFMacro 137 39 8 3 90 39 38 137 143 62 62

AVG. in FFMacro 1.37 0.39 0.08 0.03 0.90 0.39 0.38 1.37 1.43 0.62 0.62

Table 25: Found patterns (rules) in FFMeso, FFMesoB and FFMacro based on 100

levels and 1000 generations per level.

Pattern Enemy

OCC. in FFMeso 2129 1510 221 2354 1310 97

AVG. in FFMeso 21.29 15.10 2.21 23.54 13.10 0.97

OCC. in FFMesoB 34 3 1 29 3 1

AVG. in FFMesoB 0.34 0.03 0.01 0.29 0.03 0.01

OCC. in FFMacro 32 2 0 40 5 2

AVG. in FFMacro 0.32 0.02 0 0.4 0.05 0.02

notes 155

Table 26: Found patterns (rules) in FFMeso, FFMesoB and FFMacro based on 100

levels and 1000 generations per level.

Pattern Hordes Gaps

OCC. in FFMeso 553 753 1380 1380 545 4 6 2 11

AVG. in FFMeso 5.53 7.53 13.80 13.80 5.45 0.04 0.06 0.02 0.11

OCC. in FFMesoB 0 1 0 0 0 112 22 11 25

AVG. in FFMesoB 0 0.01 0 0 0 0.112 0.22 0.11 0.25

OCC. in FFMacro 0 3 4 4 0 103 21 17 24

AVG. in FFMacro 0 0.03 0.04 0.04 0 1.03 0.21 0.17 0.24

Table 27: Found patterns (rules) in FFMeso, FFMesoB and FFMacro based on 100

levels and 1000 generations per level.

Pattern Valley Stair

OCC. in FFMeso 0 0 1 18 21 18 10 18

AVG. in FFMeso 0 0 0.01 0.18 0.21 0.18 0.1 0.18

OCC. in FFMesoB 35 72 53 97 94 133 139 134

AVG. in FFMesoB 0.35 0.72 0.53 0.97 0.94 1.33 1.39 1.34

OCC. in FFMacro 38 90 86 79 89 129 102 90

AVG. in FFMacro 0.38 0.9 0.86 0.79 0.89 1.29 1.02 0.9

156 notes

Table 28: Found patterns (rules) in FFMeso, FFMesoB and FFMacro based on 100

levels and 1000 generations per level.

Pattern Pipes

OCC. in FFMeso 0 0 0 0 0 1

AVG. in FFMeso 0 0 0 0 0 0.01

OCC. in FFMesoB 5 20 39 19 231 111

AVG. in FFMesoB 0.05 0.2 0.39 0.19 2.31 1.11

OCC. in FFMacro 7 19 40 17 223 117

AVG. in FFMacro 0.07 0.19 0.4 0.17 2.23 1.17

Table 29: Comparison of found Macro patterns

MIN MAX MEAN DEV #0 #1 #2 #3 #4 #5 #6 #7

FFMesoB 0 6 2.6 1.52 14 11 12 37 19 4 3 0

FFMacro 0 7 3.2 1.53 7 10 9 24 36 9 4 1

11PA P E R 5 – A C O M PA R AT I V E E VA L U AT I O N O F
P R O C E D U R A L L E V E L G E N E R AT O R S I N T H E M A R I O A I
F R A M E W O R K

Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith and Julian Togelius

abstract

Evaluation is an open problem in procedural content generation research.
The field is now in a state where there is a glut of content generators, each
serving different purposes and using a variety of techniques. It is difficult
to understand, quantitatively or qualitatively, what makes one generator
different from another in terms of its output. To remedy this, we have con-
ducted a large-scale comparative evaluation of level generators for the Ma-
rio AI Benchmark, a research-friendly clone of the classic platform game
Super Mario Bros. In all, we compare the output of seven different level
generators from the literature, based on different algorithmic methods, plus
the levels from the original Super Mario Bros game. To compare them, we
have defined six expressivity metrics, of which two are novel contributions
in this paper. These metrics are shown to provide interestingly different
characterizations of the level generators. The results presented in this pa-
per, and the accompanying source code, is meant to become a benchmark
against which to test new level generators and expressivity metrics.

published in

Proceedings of the 9th International Conference on the Foundations of Dig-
ital Games

SASDG c©2014

157

A C O M PA R AT I V E E VA L U AT I O N O F P R O C E D U R A L
L E V E L G E N E R AT O R S I N T H E M A R I O A I F R A M E W O R K

11.1 introduction

Procedural Content Generation (PCG) research is concerned with creating
methods for generating game content with limited human involvement, au-
tomatically or semi automatically [229, 193]. “Content” is a broad term that
involves things such as items, quests, rules and textures, but one of the
most commonly generated types of content is levels. Runtime level genera-
tion has existed in published games at least since Rogue [232], and is im-
portant for thriving game genres as different as roguelikes, endless runners
(e.g. Canabalt [182]) and epic strategy games (e.g. Civilization [73]). In recent
years, many academic researchers have been inspired to work on the prob-
lems of level generation, and the academic literature now contains dozens
of papers on the topic. These papers are methodologically very diverse,
including approaches using agents, grammars, constraint solving, cellular
automata, evolutionary computation, exhaustive search, and answer set pro-
gramming [228, 96].

A question that naturally comes to mind is how to choose which of these
methods to use. Are some methods best for different purposes? Is one gen-
erator capable of creating different kinds of content than another? Different
games, and even different stages or modes of the same game, pose dif-
ferent content generation problems. For some games, the connectivity and
reachability of the levels might be difficult to attain and the most impor-
tant problem, for others the lifelikeness of certain structures such as walls
or vegetation might be most important, or the rhythm of the level, or the
fine-tuned challenge of the level. On top of that, PCG solutions have numer-
ous tradeoffs. For example, a common tradeoff is the speed of the solution
versus the possibility to guarantee certain properties of the level (such as

159

160 paper 5

reachability). The degree to which the character of the generated level can
be controlled via parameters might also be in opposition to the diversity of
the generated content. In order to obtain meaningful solutions to these ques-
tions and problems, a method must first be created to evaluate individual
content generators and compare generators to each other.

The current state of evaluation for content generators is largely ad hoc.
Some generators are evaluated implicitly, via an evaluation of the game that
they are situated in. This form of evaluation is not helpful to understand
the qualities of the generator itself, and how to compare it to other genera-
tors. Frequently, generators are evaluated via a small sample of their output
being shown as representative of the generator’s capabilities; this form of
evaluation-by-example lacks rigor (how do we know the small sample is
representative?) and cannot help with an understanding of the space of po-
tential content that can be created, as well as any biases in the generator.
(A critical reader of such papers tend to suspect that either the shown ex-
ample is the one good-looking level generated by the generator after many
attempts, or that all levels look pretty much like the shown example.) For
the PCG research community, it is difficult to make progress without a thor-
ough understanding of the strengths and weaknesses of current approaches,
how they compare, and whether a new generator is capable of producing
novel results.

In order to make informed decisions about which content generation met-
hod would be best suited for a particular type of content generation prob-
lem, we need a way to characterize the performance of the content generator
in the context of game design concerns. A promising approach to this takes
the form of a set of metrics that can be applied to the output of the genera-
tor, to characterize the generator’s expressive range. This paper is meant to
make progress towards a common framework for evaluating content gen-
erators through the presentation of several metrics, and evaluating these
candidate metrics on a collection of content generators.

We focus on levels for platform games, and in particular we investi-
gate level generators for the Mario AI Benchmark, based on Infinite Mario
Bros [172], an open-source game inspired by the platform game Super Mario

11.2 related work 161

Bros [158]. This is done partly because the Mario platforming games are
archetypical, their design influencing countless other games. This means
that the level generation problems posed by that game are likely to be sim-
ilar to the level generation problems posed by many other platform games
and related games. Another reason is the popularity of the Mario AI Bench-
mark among academic Game AI and PCG researchers, meaning that this is
probably the game for which the largest number of level generators have
been made. This paper compares level generators developed by ourselves
and by other researchers, in particular the participants in the Level Genera-
tion Track of the Mario AI Competition.

The main contribution of this paper is a thorough evaluation and com-
parative study of several existing level generators that have never been com-
pared before. Several of these metrics have been used before (though some
have been newly ported to the Mario AI framework); however, we also pro-
vide some new metrics, in particular the pattern-based metrics, and levels
which have not been analysed before, in particular the original SMB levels.
The result of this work is a baseline against which researchers can compare
both new metrics and new generators, including an ability to easily visual-
ize the results. The source code for the metrics and the evaluated levels has
been publicly released, to make this evaluation framework available for all
interested parties.

11.2 related work

There is a relatively large body of work aimed at understanding game de-
sign in general and level design in particular. For example, Koster’s Theory
of Fun [119] focuses on the progression of challenges and learnability of
games, while others prefer to understand games as systems of interlocking
feedback loops [5]. Recently there has been a push towards understanding
and describing games using a pattern language. Björk and Holopainen [30]
catalog recurring patterns that can be found across many games, while oth-
ers have examined level design-specific patterns in domains such as first-
person shooters [102], 2D platforming games [205, 49], and role-playing

162 paper 5

games [144, 206]. While some of these patterns are largely intended as qual-
itative descriptions of game properties, others take the view that design
patterns can be solutions to specific design problems.

Most of the aforementioned work in understanding game and level de-
sign is based in qualitative analysis and theories. Several of the metrics
in this paper form a step towards building upon such theories, including
the new design pattern metrics described in Section 11.3.2. Further opera-
tionalization of these theories to develop more sophisticated metrics is an
interesting potential area for future work.

Recently, there has been some work in trying to automatically and quan-
titatively measure aspects of game quality. Within search-based procedural
content generation there is a need for evaluation functions, and for this rea-
son several researchers have tried to quantitatively capture what they deem
to be crucial aspects of game quality. This includes Browne’s various metrics
for board games, such as drawishness, length, drama and outcome uncer-
tainty [38], and Togelius and Schmidhuber’s learning-based metric [221].
There has also been some work on trying to measure the quality of plat-
form game metrics specifically. For example, Smith and Whitehead defined
two key metrics—linearity and leniency—as well as introducing a method
for visualizing the expressive range of a generator [209]. Shaker et al. fol-
lowed up this work by introducing further metrics, some of them based on
theories of player experience and others based on data mining [191].

Finally, more broadly than PCG for games, there is some work in eval-
uating computationally creative systems; Jordanous provides a survey of
current evaluation methods [111]. It is important to note that these evalua-
tion criteria are being used to answer a different, though related, question:
computational creativity evaluation asks the extent to which a system is
creative, while PCG evaluation asks how expressive and controllable the
system is. For example, Pease et al. incorporate an evaluation of the process
that the generative system follows as well as rating the product produced
by the system [167]. Similar evaluations have been performed on platform
game level generators [45]. While we recognize the importance of process in

11.3 experimental testbed 163

understanding creativity, and feel that such discussions would be of great
value to PCG researchers, it lies outside the scope of this paper.

11.3 experimental testbed

For our experiments, we use the Mario AI Benchmark [230], built on top of
Infinite Mario Bros. The world representation in this framework is not 100%
faithful to the original Super Mario Bros., and some of the graphical elements
resemble elements from later games in the series. In particular, not all of the
items and creatures found in Super Mario Bros, can be found in Infinite Mario
Bros, but the missing features tend to be infrequently used in the original
game.

11.3.1 Generators

In this section we describe the different generators that are compared in
this paper. The generators were chosen because they have been the subject
of academic papers or have taken part in the level generator track of the
Mario AI Championship, and so as to maximize the number of different
approaches to level generation represented.

The Notch generator is the default level generator that comes with Infinite
Mario Bros. It writes levels from left to right, adding components according
to probabilities. Basic checks are performed to make sure the levels are
playable.

The Parameterized Notch generator is a version of the Notch generator
that takes parameters, which bias how levels are generated. These param-
eters are the number of gaps, width of gaps, number of enemies, enemy
placement, number of powerups and number of boxes. The test explores
all possible combinations of high and low values for these parameters.
See [185] for more information.

Hopper was written for the Level Generation track of the 2010 Mario
AI Championship. Like Notch and Parameterized Notch, it generates levels
through writing them from left to right and placing features with specific

164 paper 5

probabilities. It was built with adaptability in mind, so that the probabilities
could easily be altered depending on the player’s prior performance. The
generated parts are alternated with pre-designed parts. See [190] for more
information.

Launchpad is a rhythm-based level generator that uses design grammars
for creating levels that obey rhythmical constraints. The original version of
Launchpad incorporated several level elements that are not present in the
framework (e.g. springs); this ported version has attempted to remain as
faithful as possible to the original grammar-based implementation, substi-
tuting level components as needed. See [209] for information on the original
Launchpad.

The Occupancy-Regulated Extension (ORE) generator was also an entry
for the Level Generation track of the 2010 Mario AI championship [190].
It works by piecing together small, hand-authored chunks of levels. Each
chunk has an “anchor point” used to determine how the chunks can be
pieced together. It can create quite complex levels that are stylistically quite
different from the original Mario levels.

The Pattern-based generator uses evolutionary computation to generate
levels. Levels are represented as sequences of “slices”, or “micro-patterns”
which are taken from the original Mario. Each micro-pattern is one block
wide and has the same height as the level. The fitness function counts the
number of occurrences of specified sections of slices, or “meso-patterns”.
The objective is to find levels with as many meso-patterns as possible.
See [49] for more information.

The Grammatical Evolution (GE) generator uses evolutionary computa-
tion together with design grammars. Levels are represented as instructions
for expanding design patterns, and the fitness function measures the num-
ber of items in the level and the number of conflicts between the placement
of these items. See [191] for more information.

Finally, the original levels from Super Mario Bros 1 [158] are included.
They have been reproduced as faithfully as possible by manual translation
from the ROM code of the original game. The exceptions are those elements
which are not part of the design vocabulary of Infinite Mario Bros (and thus

11.3 experimental testbed 165

of the Mario AI benchmark), and the water-based levels which cannot be
simulated in the current version of the framework and for which completely
different design principles are likely to hold. Levels were between 148 and
377 blocks in length, with an average length of 200 blocks.

11.3.2 Metrics

To compare the levels produced by our various levels, we have used a num-
ber of metrics, most of which come from previous literature but the two
pattern-based metrics are introduced in this paper. The metrics are meant
to capture relevant aspects of the levels including player experience (e.g.
leniency) and level composition, but as there are many potentially relevant
aspects, the current set of metrics should not be seen as exhaustive.

11.3.2.1 Individual level metrics

Most of our metrics work on a single level, and return a single real number
as its evaluation of that level. All of our metrics are normalized by level
length as appropriate, and are further normalized by the total of output of
that metric.

The leniency metric is an attempt to capture how difficult a level is for
a player. Leniency was calculated by finding all points in the level where
an action by the player is needed, e.g. the edge of a platform or the end of
a string of blocks, and then determining how lenient that particular chal-
lenge would be to the player. Gaps where a player dies are given a 0 weight
for leniency and other enemies and jump lengths are weighted based on
the challenge and death possibility given to a player. When a jump is de-
tected, it looks ahead to see if any other obstacles would be in the way
while landing. These other obstacles lower the leniency of the first chal-
lenge by a factor equal to their assumed harm level. Areas with no threat
of harm are given a score of 1. Once all obstacle weights were calculated,
they were then normalized based on the length of the level and how many
possible paths were available at each point in the level. Two example levels
from the parameterized notch randomized and the pattern-based weighted

166 paper 5

count generators with very low and high leniency values are presented in
Figure 52. Note that this description of leniency is different from those used
in previous work by Smith et al. [209] and Shaker et al. [191].

(a) leniency = 1

(b) leniency = 0.23

Figure 52: Example levels from (a) the parameterized notch randomized and (b) the
pattern-based weighted count generators with very low and high leniency
values.

The linearity metric is calculated by finding the R2 good-ness-of-fit mea-
sure for a line that has been fit to the end points for each platform in
the level. This means that levels with many height differences will have
low linearity, while levels that follow a straight line (flat or otherwise) will
have maximum linearity. Linearity is originally defined in [209]. Figure 53

presents two examples from different generators having extreme linearity
values.

(a) linearity = 1

(b) linearity = 0

Figure 53: Example levels from (a) the parameterized notch randomized and (b) the
ORE generators with very low and high linearity values.

Density is a measure of how many platforms are stacked on top of each
other. The density calculator assigns a density value to each position de-

11.3 experimental testbed 167

pending on how many different heights Mario could possibly stand on. The
density value for a level is simply the average density value for all positions
on the level. Density is defined in [191] and two example figures for levels
from two different generators with comparable density score are presented
in 54.

(a) density = 0.81

(b) density = 0.88

Figure 54: Example levels from (a) the notch and (b) the hopper generators with
comparable density values.

Pattern density measures how many meso-patterns from the original Su-
per Mario Bros game can be found in the level. This metric is the same
calculation as the evaluation function for the evolutionary algorithm in the
pattern-based level generator, and is described in [49]. The metric is normal-
ized according to level length. Figure 55 presents two illustrative levels for
this measure.

Pattern variation, on the other hand, measures only unique occurrences
of patterns and gives higher values to levels with diverse meso-patterns
instead of many reoccurring meso-patterns. The metric is also normalized
according to level length.

11.3.2.2 Level distance metrics

The other category of metrics are those that do not work on individual
levels, but on pairs of levels by measuring how different they are, or in
other words their distance in some space.

In the comparison performed for this paper we only have one level dis-
tance metric: compression distance is a domain-general metric based on

168 paper 5

(a) pattern density = 0.17

(b) pattern density = 0.172

Figure 55: Example levels from (a) the launchpad and (b) the GE generators with
comparable pattern density values.

the principle that if two strings are similar, you save more space when com-
pressing them together. In this implementation, we use the standard gzip
algorithm and compare the length of the resulting string when compress-
ing each of two levels individually and when compressing them together.
Compression distance is described in [127] and applied to platform game
levels in [191]. Figure 56 presents two example levels transcribed from the
original game that are found to be very dissimilar to each other according
to this measure.

(a)

(b)

Figure 56: Examples from the original levels that are dissimilar according to the
compression distance, ncd = 0.9.

Another example of a metric that would fit this category is the edit dis-
tance metric used in clustering Launchpad’s rhythm groups [209].

11.4 generator comparison 169

11.4 generator comparison

All level generators were instructed to output levels of approximately 200

blocks in length, which on average would be about a minute of playing
time for a proficient player, and which is close to the median length of the
original SMB levels. All level generators were used to produce 1000 unique
levels; from the original game, we have 22 unique levels (omitting 10 levels
from the original, since 2 levels are “under water” and 8 levels are “boss-
fight levels”) We never analyzed the bonus areas since they primarily are
“warp zones” or filled with coins.

There are seven generators included in the analysis, as described in Sec-
tion 11.3.1. Of these, there are two level sets produced by the Parameterized
Notch generator, and two level sets produced by the Launchpad generator,
with different parameter settings. The Parameterized Notch Randomized le-
vel set comes from the Parameterized Notch generator, with the values of
the controllable parameters chosen at random. The Launchpad-Rhythm levels
come from the Launchpad generator, by varying only the rhythm parameters
while holding the length of rhythm groups and component probabilities
constant. The pattern-based generator has three major variants, arising from
three different fitness functions being used: pattern occurrence (counting each
meso-pattern only once), pattern count (counting each occurence of a meso-
pattern) and weighted pattern count, where the patterns are weighted by their
rarity. Remaining generators each had a single set of levels generated for
them. The result is 12 different sets of levels to be analyzed and compared.

The remainder of this section describes the results of these experiments,
including providing visualizations of expressive range for several genera-
tor/metric combinations, and a brief description of the controllability for
each generator.

11.4.1 All Metrics

Table 30 presents a high-level comparison of all generators. For each gener-
ator, we present the average value of its levels on all metrics, and the stan-

170 paper 5

dard deviation of the that value. A number of observations can be made
based on this table. To start with, there is a lot more variance between gen-
erators (as compared to levels generated by the same generator) on some
metrics than others. For pattern density, the variation between generators
is comparable to the variance “within” generators (on levels generated by
the same generator), whereas for lenience, linearity and density it is much
higher. Therefore, it seems that the latter three metrics are better for telling
level generators apart; a complementary interpretation is that all generators
are bad at providing variance in those three dimensions.

Studying each metric in detail, we can see a number of patterns. The low-
est leniency value can be found for occupancy-regulated extension. Looking
at the levels, it is clear that they feature more gaps than other levels. This
doesn’t necessarily make them more difficult, as there are often many dif-
ferent jumping-off point for each gap. For the linearity metric, the outlier
is instead the two versions of the Launchpad generator, which have much
higher linearity (and larger variety with respect to linearity) than the other
generators. It is here very clear that Launchpad was originally designed
with another kind of platform game in mind, more akin to rhythm-based
games such as Sonic the Hedgehog [212] which feature more or less constant
forward motion.

For the density metric, the real outlier is the pattern-based level genera-
tor. As described above, the density metric counts the number of platforms
at different heights at each tile. The original levels have a relatively low
density as well, but not at all as low as the levels generated by the pattern-
based generator. This points to that level segments with multiple level plat-
forms are for some reason not reproduced very well by the pattern-based
generator (according to its design criteria, an ideal pattern-based generator
should have values similar to those of the original levels on all metrics).
Several other generators, including the Notch generators, generate far too
many overlapping platforms of different height as compared to the original
levels.

The two pattern-based metrics are dominated by two different versions
of the pattern-based generator, as would be expected given that these met-

11.4 generator comparison 171

rics are fitness functions for these two versions of the generator. The highest
value on pattern density is thus scored by the pattern count generator, and
the highest score on pattern variation by the pattern occurence generator.
Both ORE and the original levels have very high scores on both pattern
variation and pattern density, which is logical given that the pattern that
the metric looks for are based on the original levels, and on that the ORE
generator manages to cram a lot of structure into a short level space. The
two versions of Launchpad scores low on pattern variation, pointing to
the relatively sparse character of their levels; the Notch levels also scores
low on this metric. Interestingly, pattern density and pattern variation ap-
pear highly correlated except when it comes to the pattern-based generator,
where they diverge sharply.

The compression distance metric, being fundamentally different in that
it is a between-level metric, must be discussed separately. One thing that
stands out here is that the various versions of the Notch generator have
the lowest compression distance. This indicates that the levels, from an
information-theoretic viewpoint, are all very similar. Interestingly, this cor-
responds very well with qualitative observations that the levels in Infinite
Mario Bros appear quite similar to each other. On the other end of the scale,
the pattern-based levels have the highest compression distance, meaning
that very little is gained by compressing two such levels together. This
could be explained by the way that generator assembles levels out single
slices, micro-patterns with length 1 block. As there are no fixed orders of
slices (a given meso-pattern could be implemented through many differ-
ent slice combinations), this means that a compression algorithm based on
finding commonly occurring substrings would not find much to build on.

Figure 57 shows a visualization of every metric and generator using a
boxplot graph. Each of the six metrics is clustered together per generator.
This visualization shows that each generator has its own unique profile for
the sets of metrics, not only in mean and standard deviation (as shown in
Table 30), but also in the overall range of each metric.

172 paper 5

Figure 57: A visual comparison of all generators included in this analysis using all
of the metrics. Each generator is evaluated using six metrics, denoted in
different colors. The boxplot for each generator-metric pair shows the me-
dian, and upper and lower quartiles. The whiskers extend to data points
that fall within 1.9 IQR of the upper and lower quartile, and outliers from
this range are depicted as small dots.

11.4 generator comparison 173

11.4.2 Expressive Range Visualization

The evaluation framework thus far has viewed each metric largely indepen-
dently from the others. While this provides a good high-level view on the
properties of a particular generator, it does not indicate any relationships
between metrics or show the shape of a generator’s expressive range. For
example, viewing all metrics at a high level can show that a particular gen-
erator might be pre-disposed towards creating a medium range of levels in
terms of both linearity and density, but it would not be able to show any
correlation between levels according to those metrics. Visualizing the ex-
pressive range of generators allows such biases to be easily seen [209]. This
visualization involves plotting a 2D histogram as a heatmap, where each
axis on the plot is one of the metrics, and each bucket in the histogram is
assigned a color based on how many levels are in the bucket.

For more than two metrics, there is no clear way to produce a multi-
dimensional histogram. While there are several potential uniform visual-
izations that show metric values for each individual level (e.g. a circular
heatmap, or a stacked bar chart), the crucial insight gained from expressive
range evaluation is identifying dense areas in a plot resulting from many
levels sharing similar metric values. Thus, in this paper, we have chosen
to compare expressive range by generating several graphs per generator
for pairwise combinations of metrics. For space reasons, not all expressive
range graphs are shown here; we have selected one of these sets of graphs
with particularly interesting features to show in this paper.

In each of the graphs corresponding to metric pair shown in Figure 58,
the warmest area of the heatmap is red (corresponding to 40 or more levels
in that bin), while the coolest area of the heatmap is dark blue. Expressive
range for the original SMB levels uses a different scale, however, as there
are considerably fewer levels available to measure; the warmest area of the
Original SMB level heatmaps corresponds to 5 levels being in that bin.

Figure 58 shows several subtleties of the generative space for each gener-
ator formed by the density and leniency metrics. The rough shapes of the
expressive range correspond to what would be expected, given the range

174 paper 5

of each metric shown in Figure 57. However, the version of Launchpad that
varies its rhythm parameters (row 1, column 4) shows an unexpected cor-
relation between density and leniency, which is not mirrored in the fixed-
rhythm version. The Parameterized Notch generator (row 1, column 6) shows
that it biases two distinct clusters of levels, again with a slight correlation
between the two metrics. From all of the graphs side by side, it is clear that
the expressive ranges of each of these generators are overall quite different,
though there are some similarities. Overall character and shape of the gen-
erators is somewhat easier to interpret in these graphs than using a boxes
and whiskers diagram.

11.4.3 Controllability

As discussed in the introduction, there is a potential and sometimes per-
ceived partial conflict between expressivity and controllability in procedu-
ral level generation. While this paper is chiefly about the expressive range
of the various generators involved, an important aspect of evaluating con-
tent generators is evaluating how they can be controlled. Here we discuss
the ways in which each level generator can be controlled, to help us in
gaining an initial understanding of the relationship between controllability
and expressivity in this domain. Table 31 summarizes how each generator
can be controlled by a designer; note that the table contains only the main
generators, and does not list different configurations of the same generator.

The compression distance metric can be useful for understanding the im-
pact of parameters in a parameterized generator. By illustrating the com-
pression distance as a 2D matrix with a heatmap applied to it (with cooler
colors representing low distance), it is possible to see patterns with sets of
levels that have low distance between each other. For example, Figure 59a
shows the compression distance matrix for the Parameterized Notch gener-
ator. The checkerboard pattern corresponds to common combinations of
parameters: those that share the same parameters are more similar to each
other than those that do not. When examining the compression distance ma-
trix for Launchpad with varied rhythm parameters (Figure 59b), a different

11.5 future work 175

effect is seen; variety is overall higher (as reflected by higher compression
distance scores), with particularly high variety when the rhythm beat type
is regular.

11.5 future work

There are many possible metrics that we have not included in this study.
These include metrics that measure macro-scale progression and repetition
in the level. They also include simulation-based metrics, which would use
an artifical agent to play the level and analyse its playing style. Further,
we could use metrics that try to judge the shape of the level, for example
through computer vision methods. Or we could associate individual level
patterns and situations with player experience through machine learning,
and build level metrics on top of the output of such models. Lacking any
previous comparative PCG evaluation, we focused primarily on existing
research metrics.

A question that becomes more pressing the more metrics we accumu-
late is how to choose between them, or perhaps combine them. One way
would be to use principal component analysis, or some similar dimension-
ality reduction technique. This could give us a smaller number of joint
metrics that still capture the essential variance between levels. Or simpler,
we could cross-correlate the various metrics and only keep the least cor-
related ones. However, we also need to weigh the importance of having
human-interpretable metrics and results; it is important for designers and
AI researchers to understand how generators differ from each other in a
design-relevant context.

This assumes all metrics are somehow equally important. Clearly, that
is not true for most specific intendend usages, e.g. to design an intriguing,
fun or challenging level. We would therefore need to complement our com-
putational investigation with user studies, where we associate metrics with
their effects on player experience. The level distance metrics could also be
validated by investigating how different to each other various levels are
perceived to be.

176 paper 5

Figure 58: Heatmaps visualizing the expressive range of each generator according
to the Density (x-axis) and Leniency (y-axis) metrics. The order of gener-
ators (left to right, top to bottom) is: GE, hopper, launchpad, launchpad-
rhythm, notch, parameterized notch, parameterized notch-randomized,
ORE, original levels, pattern-based-count, pattern-based-occurrence, pat-
tern-based-weighted-count.

(a) (b)

Figure 59: Heatmaps visualizing the compression distance matrix, showing the
impact of varying parameters. (a) Parameterized Notch generator. (b)
Launchpad with varied rhythm parameters.

11.6 conclusions 177

Finally, the comparison of generators performed here is only possible be-
cause each generator shares a common context and framework. Evaluating
within a common framework is helpful; however, it also obscures the im-
portance of creating a content generator to meet a specific game’s context.
Clearly, some metrics can be easily applied to multiple level generation con-
texts (such as compression distance) while others may need to be fine-tuned
for a new context.

11.6 conclusions

We have defined a framework for evaluating and comparing the expressiv-
ity of level generators, and quantitatively compared seven different plat-
form game level generators (and several variations of them), along with the
original Super Mario Bros levels, using six different metrics. We have also
discussed the role of controllability in level generation and its relation to
expressivity. Our results constitute the first quantitative comparison of mul-
tiple level generators, and contain both expected and unexpected outcomes.
Among the expected outcomes are that the differences between generators
on most metrical dimensions correspond to the qualitatively observed dif-
ferences between levels generated by them. Among the unexpected out-
comes is that parameterization plays a very large role in changing the na-
ture of generated levels by some generators (e.g. Notch, Launchpad) but not
others (e.g. pattern-based). Metrics that correlate for one generator might
not correlate for another version of the same generator. We believe the in-
formation contained in this paper provides a good baseline against which
to characterize new generators and metrics, and have made freely available
level samples and source code.

178 paper 5

Table 30: Overview comparison of level generators: mean value (standard deviation)
of each metric on the output of each generator.

generator leniency linearity density pattern dens. pattern var. compr. dist.

GE 0.84 0.02 0.47 0.1 0.27 0.56

(0.06) (0.03) (0.16) (0.03) (0.06) (0.04)

hopper 0.72 0.15 0.6 0.1 0.29 0.65

(0.04) (0.16) (0.15) (0.02) (0.05) (0.05)

launchpad 0.7 0.66 0.24 0.11 0.17 0.8

(0.05) (0.31) (0.04) (0.03) (0.05) (0.07)

launchpad- 0.74 0.49 0.11 0.09 0.13 0.81

rhythm (0.07) (0.32) (0.04) (0.03) (0.06) (0.09)

notch 0.67 0.1 0.4 0.13 0.27 0.53

(0.06) (0.11) (0.16) (0.02) (0.08) (0.03)

notch 0.85 0.04 0.81 0.08 0.24 0.36

param (0.06) (0.05) (0.08) (0.03) (0.07) (0.08)

notch 0.86 0.08 0.8 0.08 0.17 0.47

param rand (0.08) (0.06) (0.1) (0.03) (0.09) (0.08)

ORE 0.51 0.05 0.43 0.16 0.35 0.73

(0.08) (0.06) (0.15) (0.03) (0.05) (0.04)

original 0.61 0.02 0.35 0.14 0.3 0.76

(0.18) (0.02) (0.37) (0.06) (0.1) (0.11)

pb count 0.63 0.07 0.08 0.39 0.41 0.85

(0.1) (0.09) (0.05) (0.17) (0.07) (0.04)

pb 0.6 0.04 0.06 0.08 0.64 0.79

occurence (0.08) (0.06) (0.09) (0.02) (0.11) (0.08)

pb weighted 0.61 0.06 0.09 0.08 0.24 0.86

count (0.12) (0.08) (0.08) (0.03) (0.07) (0.05)

11.6 conclusions 179

Table 31: Controllability of the main generators tested in this paper, using vocabu-
lary from [200].

generator control type

GE indirect, via changing evolu-
tion parameters

hopper parameterized, for implicitly
defined difficulty levels

launchpad parameterized, for component
appearance and rhythm

notch none

notch (param.) parameterized, for component
appearance

ORE knowledge representation, can
change input chunks

pattern-based indirect, via changing evo-
lution parameters; and
knowledge representation, can
change input patterns

12PA P E R 6 – L I N E A R L E V E L S T H R O U G H N - G R A M S

Steve Dahlskog, Julian Togelius & Mark J. Nelson

abstract

We show that novel, linear game levels can be created using n-grams that
have been trained on a corpus of existing levels. The method is fast and
simple, and produces levels that are recognisably in the same style as those
in the corpus that it has been trained on. We use Super Mario Bros. as an
example domain, and use a selection of the levels from the original game
as a training corpus. We treat Mario levels as a left-to-right sequence of
vertical level slices, allowing us to perform level generation in a setting
with some formal similarities to n-gram-based text generation and music
generation. In empirical results, we investigate the effects of corpus size
and n (sequence length). While the applicability of the method might seem
limited to the relatively narrow domain of 2D games, we argue that many
games in effect have linear levels and n-grams could be used to good effect,
given that a suitable alphabet can be found.

published in

AcademicMindTrek ’14, November 4-7, 2014, Tampere, Finland.
ACM c©2014

doi: 10.1145/2676467.2676506

181

L I N E A R L E V E L S T H R O U G H N - G R A M S

12.1 introduction

Procedural content generation in games (PCG) is the algorithmic creation
of game content, either with limited or no human input. Both academia
and industry (ranging from AAA-titles to independent productions) have
shown interest in PCG in the past few years. PCG has been used to solve
numerous content generation problems ranging from runtime level or item
generation to design time generation of terrain, game rules or vegetation,
using a multitude of different techniques including agents, evolutionary
computation, constraint solving, etc. [231].

Recently, participants in a Dagstuhl symposium on artificial and com-
putational intelligence and games proposed a set of long-term goals and
research challenges for PCG in a overview paper [229]. These grand goals
proposed for PCG are: Multi-level Multi-content PCG, PCG-based Game Design
and Generating Complete Games. The paper also proposed nine more concrete
research challenges that would support advancement towards reaching the
identified grand goals of PCG. Additionally, five concrete actionable steps
were proposed, all of which was envisioned to target one or several of the
research challenges.

In this paper we look into one of the proposed concrete research chal-
lenges, Representing Style, and an associated actionable step, Competent Ma-
rio Levels. Representing style means producing a generative model that fol-
lows a particular school of design thinking or a particular designer’s recog-
nised style. The Competent Mario Levels actionable step proposes inves-
tigating this question by creating level generators for the classic platform
game Super Mario Bros. (SMB) with the ability to generate varied, interest-
ing, playable, entertaining and good-looking levels.

183

184 paper 6 – linear levels through n-grams

It is instructive to look at domains other than game content generation to
see whether there are methods and ideas that could be brought to bear on a
given content generation problem. Are there domains that show similarities
to the game domain we are currently investigating, and what techniques
do they use? The n-gram method has frequently been used to model style
and generate novel “randomised” artefacts in two other creative domains,
text and music. The n-gram method is very simple – essentially, you build
conditional probability tables from strings and sample from these tables
when constructing new strings – and also very fast. As simplicity and speed
are virtues in PCG, as in so many other domains, it is worth investigating
the merits of this method seriously. As far as we know, n-grams have not
been used for level generation before (though 2D Markov chains have; see
Section 12.2.3).

We investigate whether we can model the style of the original SMB lev-
els by calculating n-gram statistics from those levels, treated as linear se-
quences of vertical level slices, and then using the resulting Markov level
model to produce novel levels that are playable and similar in style to the
original levels. As n-grams are used with strings of symbols (such as char-
acters or words, when modelling natural language), we need an “alphabet”
for expressing SMB levels as strings. For this purpose, we use a represen-
tation of the SMB levels we call “micro-patterns”, which are thin vertical
slices of a level. In previous work, these slices or micro-patterns were used
to create levels where “meso-patterns” and “macro-patterns” decided the
order of the slices and therefore gave the levels a structure, style and mean-
ing [48, 49, 51]. Figure 60 shows examples of such slices.

12.2 capturing platformer level style with n-grams

Automatically generating levels for Super-Mario-Bros.-style platformer ga-
mes has been studied relatively frequently by procedural content genera-
tion researchers [101, 190]. SMB levels have several features that make them
tempting to generate automatically. First, they have a quite obvious recur-
ring, pattern-based structure: any player who plays for even a short pe-

12.2 capturing platformer level style with n-grams 185

riod of time will start to see similar or even identical patterns of platforms,
blocks, and enemy placement reappear. Secondly, the levels are typically
oriented in a primarily linear, left-to-right direction, so they can be thought
of as a sequence of level elements, which is traversed in order.

12.2.1 N-gram style capture

Several other (otherwise rather different) domains are also characterised
by linear sequences that are traversed in order, and exhibit recurring pat-
terns: sequences of notes (music) and sequences of words (language) are
two well-known domains in which there has been considerable research
into generative methods. An interesting (and early) line of work in such
domains has been to model them purely statistically, at a surface level. By
surface level what’s meant is that models consider only the raw sequences,
and don’t analyse them in terms of higher-level or semantic structures such
as “C major” or “a prepositional phrase”. A simple way to do this surface-
level statistical modelling is based on counting n-grams (n-element subse-
quences). Given a corpus of writing or a piece of music whose style we
want to mimic, we count how often each n-length subsequence appears in
the original. We can then produce a new sequence in the same “style” (for a
certain definition of style, as we shall discuss) by stringing together n-grams
sampled from this bag, weighted according to their original counts24.

In this paper, we experiment with precisely this kind of n-gram-based ge-
neration, but with platformer levels. Our unit is a one-block-wide vertical
slice of a level. A complete level is a left-to-right sequence of these vertical
slices. This gives us a basic problem formulation very similar to the sequen-
tial n-gram-based generation used in music and natural language, allowing
borrowing of techniques and cross-domain comparisons.

12.2.2 Effects in other domains

Since our focus here is style, it’s worth briefly recounting some typical stylis-
tic effects that n-gram-based generators have in these other domains. In lan-

186 paper 6 – linear levels through n-grams

Figure 60: Different slices (micro-patterns) and a Goomba-horde.

guage generation, n-gram generation is most often perceived as a parody of
a writer’s style. Such usage dates back to at least the 1970s [24, item 176],
and recurs frequently today, for example in web-based generators that pro-
duce n-gram-based mimicry of a Twitter user’s updates. Such generators
produce a kind of uncanny surface-level reproduction of style: they mimic
the sequences of words that a particular writer typically strings together,
but when interpreted as sentences or paragraphs, the result is usually non-
sense, with little to no interpretable semantic meaning or higher-level struc-
ture.

It seems unlikely that level generation will be interpreted in precisely the
same way, as a parody of a game’s levels—though this possibility cannot be
ruled out completely. Levels are not typically communicating the same kind
of high-level semantic information via their structure as natural language
is, and the surface-level style is comparably more important.

A closer comparison may be the case of music. There, the primary com-
plaint has been that n-grams fail to produce interesting high-level structure,
at least without being pushed in a way that causes them to lose most of
their generativity [156, ch. 3]. With a low n, the music ends up consisting of
notes that are locally reasonable, but with an overall piece that wanders in
an uninteresting, aimless way, lacking conventional musical features such as

12.2 capturing platformer level style with n-grams 187

movements, recurring themes, loud and quiet periods, perhaps even an in-
terpretable time signature. On the other hand, when n is increased to add
larger context to the generator, it soon degenerates into splicing together
large preexisting snippets of music—the result of an overfit (insufficiently
smoothed) statistical model.

Therefore one of our initial questions to investigate here is whether n-
gram generation in Mario-style levels results in the same basic problem, of
level that are either too wandering, or too cut-and-pasted verbatim from the
source material.

12.2.3 Information content

Viewing platformer levels as sequences of slices leads to interesting analyt-
ical and generative possibilities connected to information content and/or
entropy of the various sequences. Essentially any sequence of units can
be seen as a code transmitting information, and be analysed (with more
or less usefulness) using tools from information theory. In fact the first in-
stance of n-gram-based modelling of natural language was performed by
Claude Shannon, in the same paper in which he introduced information
theory [194].

Later papers used the approach to, for example, statistically characterise
the average information carried by each letter of the English alphabet [195].
Use of the information-theory connection to provide control over a gen-
erative process also has old roots, dating at least back to 1960s work in
computer-music, which used the entropy rate estimated from a Markov
model as a tuning knob that the composer could use to vary the entropy
of different parts of a piece [98].25 To our knowledge, similar investigations
haven’t yet been performed with videogame levels.

This intent to investigate levels as sequences, and thereby gain a close con-
nection to both information theory and previous work in sequence-based
Markov modelling in other domains, is also why we don’t follow Snodgrass
and Ontañón [210] in modelling platformer levels as two-dimensional grids
of blocks, and instead use one-dimensional sequences of vertical slices. Two-

188 paper 6 – linear levels through n-grams

Figure 61: From left to right: the 32 most common slices from the original SMB
levels. These slices would therefore be the most frequent unigrams.

dimensional extensions of Markov models, such as Markov random fields,
have considerably different properties and less of a direct connection to
progression over time—though they are indeed interesting to investigate in
their own right, and this work is the most closely related to ours, in that it
also uses corpus-based statistical modelling to capture level style.

12.3 methods

We represent levels as sequences of vertical level slices (or micropatterns).
The full corpus of levels we used for n-gram training is comprised of 15

levels from the original SMB game. This includes all levels in the game
except for those that have considerably different mechanics from the “nor-
mal” ones: water levels, mushroom-platform levels, and boss-fight levels
are excluded. In addition, we use the slices within each individual level as
“per-level” corpora, in order to investigate whether generators trained on
different levels, or combinations of levels, have noticeably different styles.

The original levels vary in length from less than 200 to more than 300

blocks/slices; when generating, we chose a fixed level length of 100. If we
incorporate all levels into one single slice-library, several unique slices (seen

12.4 results 189

only once in the game) are found. The largest single addition to the slice
library is from level 1–2, due to its “roof” of brick-tiles almost at the top
of the screen, which is an unusual arrangement. Combining levels 1–1 and
1–2 more than doubles the slice library from 29 to 73 slices. Figure 61 shows
the most common slices that make up the SMB levels.

Our n-gram implementation works by creating separate tables of occur-
rences for unigrams, bigrams and trigrams. When generating new array
(levels), probability tables are calculated based on the occurrence tables.
Each new symbol is chosen directly based on its independent probability
for unigrams (i.e. the probability for each symbol is exactly its frequency
in the original levels). For bigrams, the probability for each symbol is its
conditional probability given the preceding character; and for trigrams, its
conditional probability given the two previous characters.

There are some special cases. When generating a level using a bigram,
the first character will be based on a unigram trained on the same corpus
(as there is no preceding character). When using a trigram, the first two
characters are based on unigrams. Another special case is for bigrams or
(especially) trigrams, when the preceding character or combination of char-
acters has never been followed by anything at all in the corpus. In this case
we use a fallback: if there is no trigram match for a character combination, we
fall back to a bigram, and if there is no bigram, we fall back to a unigram.26

12.4 results

After initial validation of the functionality of the method, we carried out
experiments to investigate the effects of varying n, the effects of varying
the training corpus, and to characterise the expressive range of the n-gram
generator. We also compared the characteristics of generated levels with
those in the initial corpus.

190 paper 6 – linear levels through n-grams

12.4.1 Effects of varying n

The effects of varying n are rather drastic. Essentially, unigrams produce a
haphazard mess, bigrams produce some local structure with much repeti-
tion and trigrams produce levels with good local structure that are stylis-
tically similar to the training corpus. In order to demonstrate these effects
we have randomly picked five example levels generated with each configu-
ration.

In figures 62, 63 and 64, we use the same corpus; namely the first level
of SMB (199 tiles wide and 14 tiles high) containing 30 different slices. For
space saving purposes we have chosen levels of length 100 tiles for all our
examples.

Figure 62: Unigram-based (n = 1) levels with SMB World 1–Level 1 as corpus.

In figure 62 we use n = 1 for our n-grams, resulting in a rather cluttered
level layout with one additional drawback: incorrect pipes. Even though the

12.4 results 191

pipes would be mendable with some rules for the generator, this may need
some testing in order to balance the occurrence of pipes. Overall, these
levels lack a feel of designed structures, and there is no sense given of
imitating any particular style.

Figure 63: Bigram-based (n = 2) levels with SMB world 1–level 1 as corpus.

After the unigram test we moved on to bigrams (n = 2). Figure 63 shows
example generated levels, which have working pipes, but also some strange
(by SMB standards, that is) “mountain ranges”, stairs going both up and
down. There are also very few enemies present. Although there seem to be
some kind of designed structures, the presence of mountain ranges, how-
ever distinct in style, does not convey the style of World 1–Level 1, or of any
level in the original SMB. When we increase n to 3, as seen in figure 64, we
get correct structures instantiating meso-level design patterns like pipe val-
leys and stairs (see discussion in [48]), and enemies are also present. Overall,
these levels bear a strong stylistic similarity to SMB World 1–Level 1.

192 paper 6 – linear levels through n-grams

Figure 64: Trigram-based (n = 3) levels with SMB 1–1 as corpus.

12.4.2 Effects of varying training data

Of course, SMB contains a lot more content than just World 1–Level 1 (1–
1). There are 32 levels across 8 worlds, some of which are very different
from the others in style, e.g. water levels and boss fight levels. But the
appearance of diversity is to some extent deceptive, as several levels are
minor but clever variations of others. For instance, levels 1–3 and 5–3 are
structurally identical, but with Bullet Bills added to 5–3. Likewise, levels 5–1

and 7–1 are structurally similar, but 7–1 is more Bullet Bill-dense. And levels
1–1, 2–1, and 6–2 are all similar, and fairly similar to 1–2 and 4–2.

In order to investigate the results of training n-grams on more than one
level, we created two new corpora: one based on levels 1–1 and 1–2 (see
figure 65) and another based on levels 1–1, 1–2 and 2–1 (see figure 66). The
combined corpora were created by simply concatenating levels. In figure 65,

12.4 results 193

Figure 65: Trigram-based (n = 3) levels with SMB 1–1, 1–2 as corpus.

we can see the effect of training on a corpus consisting of multiple levels in
subfigures 3 and 5, where the generated level abruptly changes style. Both
begin with the style of level 1–2, and whereas the last one ends in the style
of 1–1, the middle one returns to the style of 1–2 after generating a middle
section in the style of 1–1.

Continuing with figure 66 we can see that the combination of different
levels (e.g. all levels present in the middle and last one) as well as times
when the generator sticks to one level style (e.g. the second example). By
training on specific levels, the generator follows that particular style for that
level, but the larger the corpus, the larger the variation.

As we extended our corpus to include all ground-based levels (no boss,
no water and no mushroom/platform levels) each level’s traits became part
of the corpus and thus influenced the output. Unfortunately the structure of
levels becomes clear when incorporating 15 levels (including under-ground

194 paper 6 – linear levels through n-grams

Figure 66: Trigram-based (n = 3) levels with SMB 1–1, 1–2 and 2–1 as corpus.

levels). Each level starts off with 16 “simple ground” slices with just ground
and nothing interesting allowing the player to start in a safe spot. The effect
on the generated levels is wide sections of space and nothing interesting
from a play perspective. In order to generate interesting levels we shorten
these safe-spots so that they do not become to influential in the corpus. We
also remove the underground levels for the purpose of preserving the style
of surface-levels.

12.4.3 Expressive range

In order to show the diversity of the method we employ the concept of
expressive range analysis [101, 202]. Expressive range analysis is a tool for
characterising and exploring a PCG method by using a metric; essentially,
a number of artifacts (in this case levels) are independently generated, and

12.4 results 195

(a) Level: 704 Linearity +96 (MAX).

(b) Level 118: Linearity −16 (MIN).

(c) Level 50: Leniency +8 (MIN).

(d) Level 20: Leniency +44 (MAX).

Figure 67: (n = 3) levels with pruned corpus 2600 slices (15 levels from the original
SMB with the first screen of each level removed).

196 paper 6 – linear levels through n-grams

plotted in the 2-dimensional space of two different metrics. We use the met-
rics Linearity and Leniency for expressive range comparison (see figure 67

and table 32). A level with a high linearity value forces the player to jump
more often than a level with low linearity value. High Leniency means more
enemies and gaps where the player may lose a life. An expressive range
analysis of 1000 generated levels shows that the output of the n-gram level
generator exhibits considerable diversity, at least in these two dimensions.

Figure 68: Leniency and Linearity for 1000 above ground pruned levels. Higher Le-
niency means more difficult. Higher Linearity means flatter levels.

12.5 large scale comparison 197

Table 32: Linearity and Leniency.

n-gram callbacks per 1000 levels 252

Linearity Average 51.23

Linearity MIN -16

Linearity MAX 96

Linearity DEV. 16.79

Leniency Average 23.704

Leniency MIN 8

Leniency MAX 44

Leniency STD. 6.01

12.5 large scale comparison

To answer the question of whether this method really allows us to copy
style, we did a large scale statistical study of whether generated levels re-
tain the style of those levels that go into their corpus. We chose to use the
measures of linearity and leniency, discussed above, as measures of style. If
the levels that are generated from a particular corpus have similar measures
values for linearity and leniency as those in the corpus, we reason that the
levels are similar in style in at least this respect.

We generated 1000 levels based on each original level (only one level
in the corpus). We measured the linearity and leniency for each original
level and compared that value to the calculated average value for each of
the groups of the generated levels. In general, levels generated using n-
grams have linearity and leniency values very close to those of the original
levels (see Table 33). Exceptions do exist (World 3–Level 1 and 5–1 differ
on leniency, and level 1–3 differs on linearity). For level 1–3 the difference
may be related to the short original level (length 140), but the other two
levels have just below average length. Level 5–1 is on the other hand rather
spacious, which may account for the difference in leniency.

198 paper 6 – linear levels through n-grams

Table 33: Linearity & Leniency comparison between original & average value (1000

generated levels).

Corpus Lin. Lin. STD Len. Len. STD

(SMB) (gen.) (gen.) (SMB) (gen.) (gen.)

1-1 26.995 26.486 7.599 -8.295 -8.108 8.481

1-2 19.490 19.277 9.025 10.365 10.241 11.445

1-3 46.030 49.286 16.501 -1.623 -1.429 13.055

2-1 20.152 19.900 5.619 7.082 6.965 7.412

2-3 61.190 60.177 13.822 -35.778 -35.398 18.041

3-1 32.995 33.511 9.012 0.108 -0.532 8.971

3-2 16.385 16.176 7.506 1.455 1.4715 10.538

3-3 45.574 44.286 15.042 -3.983 -3.571 10.548

4-1 15.133 15.640 7.878 16.044 16.588 13.291

4-2 27.411 27.273 11.660 14.318 13.904 14.405

4-3 51.682 51.449 10.336 -22.575 -22.464 9.481

5-1 19.484 19.251 5.345 -1.538 -1.070 8.430

5-2 22.967 22.660 7.258 2.101 1.970 7.547

5-3 43.299 42.857 15.929 -2.731 -2.857 11.812

6-1 31.809 31.609 9.377 -17.194 -17.241 10.516

6-2 34.753 34.597 6.126 20.397 19.905 7.717

6-3 49.930 49.359 8.925 -9.496 -8.974 13.213

7-1 23.768 23.780 7.244 8.372 7.927 9.185

7-3 67.247 66.667 11.575 -40.883 -41.441 19.876

8-1 20.544 20.442 5.922 13.615 13.536 11.656

8-2 16.533 16.019 7.512 17.336 17.476 7.846

8-3 16.273 16.337 8.355 9.288 8.911 6.427

12.6 discussion 199

The Pearson correlation between linearity of source and generated levels
is 0.9985; for leniency, the value is 0.9998. These very strong correlations
confirm that the generated levels are indeed very similar to the source levels
using this particular measure of style.

12.6 discussion

It is clear that several of the configurations of the n-gram level generator,
in particular trigrams trained on one level or a few similar levels, generate
playable and good-looking levels in the style of those that form the corpus.
Thus, the method performs well according to the original criteria (it also
takes mere milliseconds to generate a level). It is worth discussing what
makes the method work, and how it could be used for other game content
generation problems.

12.6.1 The importance of the representation

The success of the n-gram method in this study is partly because we man-
aged to find a useful set of building blocks for the levels, or in other words
a suitable “alphabet”. The micro-patterns are few enough to allow mean-
ingful n-gram training even with a small corpus of just a few levels, or in
other words strings of just a few hundred characters’ length.

A key part of the representation is that the level is seen as a single string,
i.e. one-dimensionally. Several other ways of representing an SMB level for
n-gram generation would be possible. For example, we could generate each
row of blocks separately, with the alphabet consisting of individual blocks
and each level consisting of 15 or 20 strings on top of each other. This
would have the advantage of a small alphabet, but the considerable disad-
vantage of the different rows being completely disconnected and the level
likely being unplayable. A similar effect would be expected if trying to gen-
erate columns rather than rows. While Snodgrass and Ontañón [210] use
individual blocks as their alphabet, their use of a 2D Markov chain tech-

200 paper 6 – linear levels through n-grams

nique allows this as it takes both horizontal and vertical interactions into
account [210].

One could also imagine using longer, larger building blocks, for example
sequences that are 5-10 blocks wide, similar to the meso-patterns in our
original pattern analysis of SMB levels. However, this would lead to much
less perceived variety, as the individual building blocks would be easily
identifiable as components of the level.

12.6.2 Pruning the corpus

In our case the corpus contains several longer sections where the only slice
used is the simple ground, since almost all levels in SMB start with 16 slices
(a whole screen) of safe area for the player to start in. These longer sim-
ple ground sections can skew the n-gram-generation to create uninteresting
sections; since n-gram generation has no high-level context, these runs in-
tended to appear at only the beginning of levels can also end up appearing
in the middle of them. Similarly, the presence of either extremely common
or extremely unique sequences may result in stereotyped structures being
simply “copied” from the training corpus recognisably, limiting the variety
(in the second example of figure 66, the “c”-like structure appears twice). If
the corpus is unbalanced in such manner, we suggest pruning it to reach
the desired effect. Alternatively, the generation algorithm could be modified
through using a logarithmic transformation on the frequencies, so that less
frequent slices are relatively more often chosen (there are many other pos-
sible smoothing methods and frequency transformations that can be tried).

12.6.3 Linearity in game levels

While the method presented here works well for SMB levels, it could be
argued that its usefulness is limited to other side-scrolling platformers, or
perhaps also similar games such as 2D scrolling shooters (e.g. R-type). How-
ever, this restriction is not quite as severe as it may appear, if we take into
account games whose levels are structurally linear, even if they don’t ap-

12.7 conclusion 201

pear as literal left-to-right side-scrolling sequences. Many games that osten-
sibly feature 3D worlds with full 3D spatial movement are actually built on
linear levels; examples include shooters such as Halo and Call of Duty (in
campaign mode at least), racing games such as Need for Speed and Forza Mo-
torsport and 3D endless runners such as Temple Run and Canabalt. Given the
identification of a suitable alphabet, the n-gram method could be used as
is. Branching paths could be handled by simply generating separate strings
for the different paths following a branching point.

12.7 conclusion

We have shown that n-grams, trained on a corpus consisting of one or sev-
eral levels from the original SMB game, can be used to effectively generate
levels that are similar in style to the level(s) used in the corpus. The method
is fast and reliable, and gives a reasonable diversity in several dimensions.
Using n = 3 gives markedly better results than n = 2 and particularly com-
pared to n = 1 in terms of the visual appeal of the level, and most probably
in terms of playability as well. Using a corpus consisting of several levels
increases the variety among produced levels, but can lead to surprising
shifts in style. It is also found that the generated levels are indeed (on av-
erage) very similar to the levels used to learn the n-grams, showed that the
method accurately reproduces at least some aspects of style. This simple
method has potential to be useful for a large number of games, and should
be investigated further in other game domains.

notes

24From a more statistical viewpoint, counting n-grams gives us the maximum likelihood
estimate of a (n− 1)th order Markov model presumed to have generated the observed text.
Generation then consists of sampling from this Markov model.

25For a survey of the uses of Markov modelling for generative music, see [9].
26This is a fairly simple back-off model, essentially a special case of the widely used Katz

back-off model [114], with a back-off threshold of 0, and no discounting.

13
PA P E R 7 – PAT T E R N S , D U N G E O N S A N D G E N E R AT O R S

Steve Dahlskog, Staffan Björk & Julian Togelius

abstract

This paper analyses dungeons, of the varieties commonly found in role-
playing games, into several sets of design patterns at different levels of ab-
straction. The analysis focuses on mechanical patterns that could be either
straightforwardly instantiated or recognized by a well-defined process. At
the most concrete level a set of fundamental components were identified,
followed by a long list of micro-patterns which can be directly instantiated.
Shorter lists of meso- and macro-patterns, which can be identified mechan-
ically, are also identified. The direct motivation for this analysis is to find
building blocks and objectives for a search-based procedural dungeon gen-
erator, however we believe the analysis can be useful for understanding this
class of game artifacts in general. In particular, the constraints on patterns
being instantiable or recognizable leads to a stricter pattern analysis than
many other attempts at analyzing game design.

published in

Proceedings of the 10th International Conference on the Foundations of Digital Ga-

mes

SASDG c©2015

203

PAT T E R N S , D U N G E O N S A N D G E N E R AT O R S

13.1 introduction

Design patterns have become an important tool for analyzing and reason-
ing about game design. They provide a relatively formal way of talking
about game design, which is appealing particularly for those who want
to automate the analysis and/or generation of game content. In recent re-
search, a method has been devised for procedurally generating platform
game levels based on design patterns [48, 50]. This method is based on
the idea that design patterns can be ordered into different levels of abstrac-
tion, from smaller and more concrete patterns to larger and more abstract
patterns. The larger patterns can be instantiated in multiple ways through
different combinations of smaller patterns. Levels can then be generated
through searching for combinations of smaller patterns that yield certain
larger patterns.

This paper addresses the domain of dungeons, the type of levels with a
spatial puzzle quality first introduced in Dungeons & Dragons [88] and typi-
cally found in “roguelikes” such as Rogue [232], Moria [118], and Hack [70],
and computer role-playing games (RPGs) such as Bard’s Tale [106] and Ul-
tima [85]. We identify a relatively large set of design patterns at different
sizes and levels of abstraction – micro-, meso- and macro-patterns. The mo-
tivation for carrying out this analysis is to find patterns that can be used for
pattern-based or search-based dungeon generation and for this reason the
granularity is finer and the level of detail of the pattern collection is higher
than what is typical for pattern collections. We believe the pattern analysis
carried out here has value for other purposes as well, such as understanding
the design space and design affordances of dungeons as a game artifact.

205

206 paper 7 – patterns , dungeons and generators

13.2 related work

Due to the approach chosen in this paper the related work is connected to
several different research areas related to games. In the following section
an overview of these will be presented together with examples of relevant
games.

13.2.1 Game Spaces and Dungeons

Exploration or movement through spaces are common gameplay features
in games. In line with this, Aarseth calls spatiality a defining element of
games and argues for a possible use in classifying games according to how
the space is implemented in the game [2]. Exploring the concept of Game
spaces, Nitsche introduces three concepts relevant to this paper in the form
of labyrinths (linear or unicursal), mazes (branching or multicursal) and
arenas (open structures with areas of free movement bounded by surround-
ing enclosement) [161]. Similarly, Aarseth call games where an avatar has
to be moved from a starting to end position “place-oriented” and identifies
hubs, open landscapes, and uni- or multicursal structures as components of
quest-based games [1].

A common game space in fantasy RPGs is the dungeon. The dungeon
has been present in fantasy RPGs more or less from its introduction in
Dungeons & Dragons [88] in 1974 until today. The following description is
provided in a later edition of the game: “A Dungeon is a group of rooms
and corridors in which monsters and treasures can be found.” [89]. This
definition is arguably rather open and could include other types of game
spaces from other types of games, like bunkers, castles and other buildings
in, for example First-Person Shooters. For the purposes of this paper, we
accept this definition and the consequence that it might include similar
spaces in other games, but we base our analysis only on games that are
commonly agreed to fall into the RPG genre.

The ubiquity of dungeons in RPGs indicate that they solve recurring prob-
lems in game design, and provide a key part of the player experience. From

13.2 related work 207

a player perspective, it is likely that the rather confined space of the dun-
geon provides interestingness by allowing exploration of a non-trivial lay-
out of space, and excitement due to incorporated components such as en-
emies, traps, and treasures. The constraint on player movement can create
additional tension and exploring dungeons may in many cases also impose
a level of resource management (e.g. considering how much provisions and
consumables should be brought or when attempt to resupply should be
made). Similarly, it is likely from a designer’s viewpoint that explicitly lim-
iting the player’s available choices and access to information helps structure
the order in which players gains access to the game (and thus the story). By
providing access to certain areas only in a specific order, it becomes easier
to combine a storyline with the relatively free exploration of non-dungeon
parts (“overworld”) of many RPGs.

13.2.2 Design Patterns

Design patterns is the idea that certain design solutions can be described
on an abstracted level so they can both be re-used in similar contexts and
casual relations between them can be identified. They were originally de-
veloped for architecture by Alexander et al. to help end users take part in
design processes [7] as part of a large movement focusing on understand-
ing design methods (cf. [110]). The use of design patterns for understanding
games was first introduced by Kreimeier [122] and then followed by Björk
& Holopainen who developed a collection of approximately 300 design pat-
terns [30]. Similar approaches include the 400 rules project [23] and the
game ontology project [246]. This paper follows a convention to mark pat-
terns through the use of small caps.

While the collection developed by Björk & Holopainen include some pat-
terns appropriate for analyzing the design of dungeons in RPGs, other more
specific collections related to this have been developed. Hullett & White-
head [102] explored the design of levels in First-Person Shooters and cre-
ated a collection of 10 design patterns which have later been incorporated
in the collection initiated by Björk & Holopainen [29]. Smith et al. analysed

208 paper 7 – patterns , dungeons and generators

20 games and the resulting design patterns were grouped into level and
quest patterns in RPGs [207]27.

Gameplay design patterns have been combined with the Mechanics-Dy-
namics-Aesthetics framework [103] to explain how patterns dealing with
concrete rules or game elements can cause dynamic behaviors and through
this aesthetical experience. This has been used to both explore camara-
derie [25] and pottering [133] in games and to compare similarities and
difference between the game X-COM: UFO Defense [153] and its remake
XCOM: Enemy Unknown [74, 40].

13.2.3 Procedural Content Generation

Procedural content generation (PCG) in games refers to methods for algo-
rithmically creating game content (e.g. games, rules, worlds, levels, items,
etc.). PCG might be used independently or to assist a human designer, with
human design objectives and partial designs as input. While many early
digital games featured some kind of PCG, it has only become an active area
of research in academic settings within the last few years [193]. PCG has
been used in many games of different genres, but is perhaps most central to
games relying on runtime generation dungeons like Diablo [34], Rogue and
Ultima I. Even as early as in 1979, methods for generating dungeons were
present in both pen-and-paper RPGs (Advanced Dungeons & Dragons [87]) as
well as in digital games (Akalabeth: World of Doom [84]).

A recent paper surveyed procedurally generated dungeons showing pre-
vious work from a technical perspective, amount of control over the gen-
erative process, the output and results. In the paper, the authors argue for
researching dungeons due to its close relation to successful games [239].
Procedural dungeon generation has also been surveyed in the textbook on
PCG in games [193]. A wide variety of different methods have been applied
to generating dungeons. These include evolutionary algorithms [12, 13, 142,
237, 14], grammar expansion [62, 63], cellular automata [109], constraint
solving [94, 199], and various ad-hoc methods such as dungeon diggers
and binary space partitioning [193].

13.3 classification of dungeons 209

13.2.4 Design Patterns used in PCG

Given that design patterns are formalizations of game and level design
into relatively simple and independent components, it stands to reason that
they would be useful in content generators. A content generator is after all
exactly a generative formal design theory. Thus, several recent experiments
in procedural content generation use the language of design patterns to
describe parts of the content generator or the artifacts it produces [71, 166].

Dahlskog et al. have taken the metaphor further and developed a search-
based level generator based on design patterns on different levels of ab-
straction [48, 49]. The prototype implementation, which generates levels
for Super Mario Bros (SMB) [158], uses patterns on the micro-, meso- and
macro-levels. Micro-patterns are simple vertical slices of SMB levels, meso-
patterns are larger features such as enemy hordes or “pipe valleys”, and
macro-patterns are sequences of meso-patterns. The patterns at each level
of abstraction are composed of multiple patterns of a lower level of abstrac-
tion. This configurations allows levels to be created through searching the
space of sequences of micro-patterns for occurrences of macro-patterns. In
effect, micro-patterns are used as building blocks and meso- and macro-
patterns as objectives.

13.3 classification of dungeons

In order to argue for what a dungeon looks like we surveyed a large number
of dungeons in a set of RPGs and gathered empirical data by brute force
incremental analysis similar to [31]. The approach focused on identifying
patterns based on game space and game mechanics related to dungeons
in each game. The approach included actual game playing, primarily on
emulators, supported with strategy guides, maps and Youtube clips to min-
imize playtime outside the actual dungeons (i.e. minimal time was com-
mitted to exploring story or solving puzzles). We picked games from an
exhaustive source [22] and correlated this source with the game magazine
Computer Gaming World’s lists of RPGs [184] to have a rich data set. All in

210 paper 7 – patterns , dungeons and generators

Table 34: Fundamental Components

Tile The basic unit of space in a dungeon. Individual
Tiles have Boolean attributes associated with them:
Passable and Seethru.

Level A rectangular space of Tile.

Wall Tile The base classification of Tiles in a Level. Tiles

belonging to this category are not Passable and not
Seethru. The Base Content of a Tile in Rogue is
“Rock”.

Ground Tile A classification for Tiles that are Passable and
Seethru.

Item A game object that can be in a Tile but which can
also be picked up, carried, and dropped in other
Tiles.

Agent A game object that can perform actions, e.g. moving
and attacking, and is located on a specific Tile. The
player’s avatar is an Agent as are monsters. They
typically hinder other from entering the Tile they are
in, i.e. they temporary remove the attribute Passable
from the Tile they are in.

Line-of-
Sight(A,B)

A Boolean function returning if all Tiles on a straight
line between point A and B in a Level are Seethru.

Traversable

(A,B)
A Boolean function returning if a player can move be-
tween point A and B in a Level. A Route is a traver-
sal solution and the length of different Routes may
be needed for some design patterns.

Sequenced

(A,B)
A Boolean function returning if point A must be vis-
ited before point B in a Level.

13.3 classification of dungeons 211

Figure 69: A dungeon in The Legend of Zelda (Connected Rooms).

Figure 70: A dungeon in Rogue (Rooms & Corridors).

all, 91 games released between 1975-1993 were analyzed in detail but several
more modern games will be used as examples in the text. The motivation
for focusing on our analysis on the period between 1975 and 1993 is due
to resource limitations as well as these early games have a stronger focus
on actual dungeons whereas modern games have the possibility of adding
open world-like areas with the effect that the player spend more time there
than in dungeons (c.f. The Elder Scrolls V: Skyrim [26]). We intend to add
more games to the list in the future as we extend the project with content
generation.

212 paper 7 – patterns , dungeons and generators

Figure 71: Dungeons in Ultima I (Maze) and Ultima II (Labyrinth).

Figure 72: A dungeon in Diablo (Open area).

In essence, the surveyed games showed similarities on the account of
topology and the different dungeons could be classified and grouped into
five different types. Commonly the topology could be described as scarce or
dense depending on how much traversable game space the dungeon layout
contains (dense dungeons have more traversable space).

1. Connected Rooms is a type of dungeon that is most common in classic
text-based adventure games. The player moves from interesting sites
(rooms) without explicit corridors, pathways or tunnels to the next
site. Games like Colossal Cave Adventure [47] and Zork [124, 104] but
also The Legend of Zelda [160] (see Fig. 69) have such dungeons; they
are efficiently mapped with graphs.

2. A Rooms & Corridors dungeon is often scarce with a small set of
rooms connected with non-branching corridors. Typical examples of

13.4 patterns 213

this type of dungeons are present in Rogue (see Fig. 70) and roguelike
games from the 1980-ies. Corridors are functional game space and
events (combat) can take place there. If the game allows the player
to dig through walls, graphs will not be sufficient to map the game
space and 2D-matrices are needed.

3. Labyrinths are unicursal structures with a single path leading through
the dungeon. Earlier games like Ultima II [86] (see Fig. 71). These
dungeons are often dense and demand 2D-matrices for mapping.

4. Mazes are multicursal layouts with multiple paths leading through the
dungeon. Both earlier and later games have this kind of topology. It
is often dense and games like Akalabeth: World of Doom and Ultima I
have these kinds of dungeons (see Fig. 71).

5. Open area-dungeons consists of extremely open space (for a dungeon)
with obstacles (e.g. thin walls) that hinders free maneuvering, but in
comparison with the other types of dungeons, the tactical maneuver-
ing have greater importance. Corridors are uncommon and if one con-
siders the traversable space of these dungeons they are very dense.
Games like Telengard [123] and Diablo (see Fig. 72) are typical for this
kind of dungeons.

13.4 patterns

After surveying the 91 games, the next step was to identify design patterns
within these related to the level, or dungeon, design. However, the domain
of the study needed to be delimited to a manageable size and an emphasis
was placed on the Rooms & Corridors, Labyrinths, and Mazes classifications.
More specifically, we decided on studying dungeons as they can appear
in two-dimensional games where movement primarily takes place horizon-
tally, and is characterized by exploration in constrained spaces and progres-
sion. Further, we restricted ourselves to games where the dungeons can be
specified as combinations of multiple tiles, though movement between the

214 paper 7 – patterns , dungeons and generators

tiles may or may not be pseudo-continuous. This definition includes dun-
geons in classic CRPGs such as early games in the Legend of Zelda series and
Final Fantasy [215] series as well as roguelikes like Rogue, Nethack [219] and
Diablo. We are excluding games with a large amount of vertical moment, in
particular platformers like Super Mario Bros, and games which prominently
feature three-dimensional exploration like Tomb
Raider [46]. Furthermore, we are looking at patterns that exist in multiple
games, not just one or a few. Even so, all the 91 games analyzed continued
to be used as sources when possible.

Design patterns provide abstract descriptions of solutions to common
problems. Although this abstraction can easily be contextualized by hu-
man designers given a specific design problem, the same does not apply
to systems that procedurally generate solutions. The strategy we applied
to bridge this issue was to introduce several layers of interrelated patterns
where the lowest levels have a low degree of abstraction and therefore can
be easily instantiated or recognized by an algorithm, making the patterns
useful as part of a procedural dungeon generator. Previously Dahlskog &
Togelius [48, 49] and Ferreira & Toledo [71] have done so in other domains.
As a result, the pattern analysis is here in some senses more rigorous and
formal than similar pattern analyses found elsewhere, but also more limited.
In relation to the different levels of the Mechanics-Dynamics-Aesthetics
(MDA) framework [103], the focus was squarely on mechanical patterns,
omitting dynamical or aesthetic ones.

As the immediate motivation for this study is to find a set of patterns
that can be used for content generation, we needed to place constraints
on the patterns we found. A first constraint we set up was to use a set of
fundamental components and that patterns should be described in terms of
these components and other patterns. This implied a hierarchy of patterns
which lead to a classification of patterns as either micro-patterns, meso-
patterns or macro-patterns similar to what was done earlier by Dahlskog et
al. [48]. The relation between these is that meso-patterns can be built out of
configurations of multiple micro-patterns, and macro-patterns can be built
out of combinations of micro- and meso-patterns. Micro-patterns have the

13.4 patterns 215

further constraint that they should be mechanically instantiable: it should be
possible for a constructive algorithm to instantiate any of those patterns at
any given position in a tile by simply “dropping it in” without analyzing
more than the immediately neighboring tiles.

If should be noted that the collection presented here is non-exhaustive.
The patterns presented are however sufficient to create the dungeons with
all the main features found in RPG dungeons. When reading the tables,
note that most entities are classified as being more specific versions of other
entities and this is indicated by listing the more general entity in parenthesis
after an entity name.

13.4.1 Fundamental Components

For the context of this paper, two Boolean attributes are relevant for Tiles:
Passable and Seethru. Passable Tiles can be both entered and left while Pass-
able are those that can be seen through as well as allow ranged attacked to
pass through them. These and several other basic concepts can be found in
table 34.

13.4.2 Micro-patterns

The Micro-patterns introduced here make use of types that describes cate-
gories of Micro-patterns. For example, all patterns classified as Space create
areas where players can move and individual Micro-Patterns make use of
this type to describe how they can be combined with other patterns to cre-
ate larger areas where players can move around. A list of identified micro-
patters can be found in table 35–37.

13.4.3 Meso-patterns

While Meso-patterns are also mechanical in the sense that they can be ob-
served from static instances of a game in progress (and thus identified by a
static evaluation function), they are abstract in the sense that their existence

216 paper 7 – patterns , dungeons and generators

Table 35: Micro-patterns part 1.

Space A Space is a group of connected Tiles that share the
same attributes and optionally other design features
such as topological properties or gameplay function-
ality. The simplest Space is simply one Tile.

Corridor

(Space)
A Corridor is a series of horizontal or vertical
Ground Tile. The end points of a Corridor can
be connected to other Spaces. In Rogue Corridors

connect Rooms but in other games like Ultima I (see
Fig. 71) Corridors is the main spatial component
and Rooms are missing.

Connector

(Space)
A Connector is a 1 Ground Tile long Corridor

that is used to let passages in dungeons turn or allow
intersections by being connected to other Spaces.

Room (Space) A Room consists of several Ground Tiles but wider
than a Corridor and allow for more freedom in
movement.

Door (Space) The Door is a barrier that has two states; “open” or
“closed”. Open doors are Passable and Seethru while
closed door are neither. Connection to other Spaces
are typically in a north-sound or west-east direction.
In Diablo Enemies does not notice the player charac-
ter through Doors. Some Doors have a connected
key that allow for a third state “locked”. Some ga-
mes have “breakable” Doors which puts the door in
a constant “open” state.

Hidden door

(Space)
Hidden door is a Door that functions like a Wall

until it has been revealed.

Key

(Item) [207]
A Key is a Item allowing the ability of altering any or
a specific Door’s state regarding being “locked”.

13.4 patterns 217

Table 36: Micro-patterns part 2.

Props (Space) Props are Ground Tiles with decorations but no ex-
tra functionality. Doors in Rogue are Props!

Obstacles

(Item)
Obstacles occupy Tiles and hinder Agents from en-
tering them. They can be modeled as Items that can-
not be picked up and make Tiles temporary lose any
Passable attribute like Agents but can also be mod-
eled as Agents that cannot perform actions. They
may be destroyable or movable. Examples include
boulders in Rogue.

Installations

(Props)
Installations are Props (or Obstacles) that allow
actions, typically by the players’ avatars when they
are next to them, but Installations can also pro-
vide actions to other Agents or be activated by the
game system. Example includes fountains in rogue-
likes and mana pools in Diablo.

Containers

(Installa-
tion) [207]

Containers allow caches of Items to be accessed
from the Tiles they are placed in. While they typi-
cally are Installations they can also be Items. Like
Doors, Containers may be locked so possession of
Keys or abilities to pick locks may be need to have
access to the Items inside Containers. The Legend
of Zelda: A Link to the Past [159] has Chests that need
Keys to be unlocked while Nethack provides a multi-
tude of ways to open locked Chests, none which in-
volve Keys.

218 paper 7 – patterns , dungeons and generators

Table 37: Micro-patterns part 3.

Stairs (Installa-

tion)

Stairs are Installations that allow movement away from

the current Level. This is typically to another Level which

requires the position of a entry point on that Level. When

movement back is possible the natural design solution is

to have Stairs on the entry point which leads back to the

original Stairs Tile. If this is not possible, a Prop indicat-

ing the entry point can provide diegetic consistency [29]. In

several games this vertical movement affects the difficulty

or strength of the opposing Enemy.

Impassable

Space (Space)

An Impassable Space a group of connected Tiles that are

not Passable but Seethru and thereby allows Line-of-Sight

through them. In Diablo the lava lakes works as Impassable

terrain.

Traps (Installa-

tions) [207]

Traps are typically hidden and perform a one-time attack

on Agents entering the Tile they are placed in. Traps are

typically hidden until activated or revealed, and may be

disarmed when revealed. They are typically modeled as

Installations with automatic activation but could also be

created as Agents that cannot move. Examples of Traps

include bear traps in Rogue and pits in Nethack.

Enemies

(Agents)

Enemies are simply Agents whose primary behavior is to

attack players’ avatars. A main dichotomy regarding Ene-

mies are if they can move or not.

Spawn Points (In-

stallation) [207]

Spawn Points are Installations from which Enemies ap-

pear. Generators in Gauntlet [15] are Spawn Points.

Portals (Instal-

lations) [207]

Portals allow instantaneous movement between to spa-

tially separated points in a level. They can be modeled as

Stairs which may be either Props or Obstacles and can

either work only in direction or both directions. The Bard’s
Tale games include Portals in their dungeon design.

13.5 discussion and conclusions 219

relies on combinations of Micro-patterns. Many of the patterns mentioned
in this section (and the next) have already been documented as patterns ear-
lier (cf. [29, 207, 102]), although in some cases under other names. However,
those descriptions were not specific enough to be the basis for an intended
dungeon generator so alternative versions are presented here. Our list of
identified meso-patterns can be found in table 38 and 39.

13.4.4 Macro-patterns

The highest level of abstraction used in this collection are Macro-Patterns.
These are pattern defined through the use of the fundamental components
and lower-level patterns, typically focusing on longer periods of gameplay
or — somewhat paradoxically — specific gameplay aspects that depend
on a combination of circumstances. Like in the case of Meso-Patterns, they
have already been identified in a variety of other games. Table 40 contains
our list of macro-patterns.

13.5 discussion and conclusions

The patterns presented above are only a sample of the possible patterns for
procedurally generating dungeons. Many more, e.g. Arenas, Boss Mon-
ster Dungeon, Multi-Level Dungeon, and Secret Areas, could have
been included, though that would require a longer paper format. However,
one can ask what the benefits of the presented framework here provides
given that several of the games examined already create procedurally gen-
erated dungeons. However, the pattern-based content generation approach
allows us to build generators that respect design constraints and imple-
ment patterns on different levels, unlike the relatively unstructured output
of many dungeon generators.

The pattern collection provides an abstract model of level design in “dun-
geon crawl” RPGs. These patterns were constructed after reviewing 91 ga-
mes using dungeon so they reflect actual design practice of game designers.
As such they present a model usable for both designers and researchers,

220 paper 7 – patterns , dungeons and generators

Table 38: Meso-Patterns part 1

Choke Points

(Space) [29,
102, 207]

Choke Points are Tiles that are the only connections be-

tween two different parts of a Level, or in other words:

a Tile C is a Choke Point if there exists Tiles A and B
so that Traversable(A,B) is true but all Routes require

passing through C. Choke Points can be created from

Doors or Portals and allow sequences of Sequenced rela-

tions to be constructed; a Choke Points C between A and

B enforce Sequenced(A,C) and Sequenced(C,B). Choke

Points larger than Tiles can be constructed through plac-

ing Spaces such as Rooms behind other Choke Points.

Special

Rooms (Room)
These are Room created together with specific content such

as Items or Enemies in them as well as possibly having re-

strictions on access to them. Shops in Nethack is an example

of a Special Room; it is only accessible through a Choke

Point, includes a Shopkeeper and have Installations on

all Tiles to handle buying and selling Items. Beehives is

another example from the same game which populate a

Room with Enemies in the form of Killer Bees and Queen
Bees together with Royal Jelly Items.

Dead Ends

(Space)
Dead Ends are locations from which players must move

through previously explored areas. The simplest form of

Dead End is constructed by placing a Choke Point be-

tween a Ground Tile and the rest of a Level. However,

other Spaces such as Corridors or Rooms can also be the

Dead Ends after a Choke Point. This pattern is subjec-

tive to the amount of gameplay that is provided behind

the Choke Point, no or little gameplay can make a larger

Space into Dead Ends while a small Space with rich game-

play is less of a Dead End (cf. the Shop in Special Rooms

pattern.)

13.5 discussion and conclusions 221

Table 39: Meso-Patterns part 2

Conditional

Passage-
ways (Choke
Point) [29, 207]

Conditional Passageways are Tiles that are only Passable
when a character has a special skill or Item. They need to

be Choke Points to avoid functionally becoming equiv-

alent to Obstacles. The possibility of Conditional Pas-

sageways necessitate the consideration of a Condition-

ally Traversable(A,B) function. The presence of Condi-

tional Passageways can make Choke Points directional

in that they only are Choke Points when moving from

A to B but not when moving from B and A. Conditional

Passageways can be created through the use of Doors and

keys but Pokémon [81] provides an example of another so-

lution: a Bicycle is needed to go on “Cycling Road” (Kanto

and Sinnoh regions) and Seaside Cycling Road.

One-Way

Travel

(Route) [29]

This is design solution which makes a Route be-

tween A and B so that Traversable(A,B) is true while

Traversable(B,A) is false. This is typically done through

Portals or Stairs but the introduction of one-way Doors

is another possibility.

Flanking

Routes

(Route) [29,
102]

These Routes offer alternatives to what is perceived as

the most direct Route between Space A and B. They

can be created through first creating a Route that is

Traversable(A,B) and then create another Route which

is less obvious. This latter feature can be achieved by mak-

ing the Route longer, hiding it through the use of Secret

Doors, or making it Conditionally Traversable(A,B)

through the use of Conditional Passageways.

222 paper 7 – patterns , dungeons and generators

Table 40: Macro-Patterns

Quick Re-
turns [29]

Quick Returns intend to let players explore a part of
a Level but offer a quick way of returning to previ-
ously explored parts after reaching a certain point. This
can be modeled by designing so that Tiles A and B are
Traversable(A,B) (or Conditionally Traversable(A,B))
with a certain minimum length but the solution for
Traversable(B,A)) is shorter. This is typically achieved
through constructing Traversable(A,B) through a number
of Choke Points but providing One-Way Travel from B
to A or a Conditional Passageway at B that activates a
shorter Conditionally Traversable(B,A) than A had to
B. The Portals to the town in Diablo and the Castle of Or-
deals are examples of Quick Returns.

Backtracking

Levels [29]
Somewhat misnamed as the pattern can be applied to parts
of Levels, Backtracking Levels denote design solutions
where players need to move from Tile A to B and then
return following basically the same Route. Backtracking

Levels can be constructed from inserting a chain of Choke

Points between A to B and making B part of a Dead End.
Backtracking Levels can also be applied to chains of Lev-
els, the goal of Rogue is to descend through Levels until
one finds the amulet of Yendor and then ascend back up
to the starting point.

Sniper Loca-
tions [29, 102]

Places advantageous to making ranged attacks against En-
emies classify as Sniper Locations. These can most eas-
ily be created by having two Spaces connected by an Im-
passable Space. However, Sniper Locations should be
relatively safe also in that Enemies cannot quickly reach
them. The use of Secret Doors, Conditional Passage-
way or Routes of a certain minimum length between the
two Spaces can achieve this.

13.5 discussion and conclusions 223

and can support either manually, procedurally generated dungeon designs
or a mixed-method approach. Although the pattern collection does not yet
reach the level of abstraction used by Aarseth or Nitsche (i.e. [1] and [161]),
we believe further work can define labyrinths, mazes, and hubs as patterns
and potentially as part of systems for PCG dungeons. A first indication of
how such patterns would look can be gleamed from the Labyrinth and
Hub-and-Spoke patterns by Smith et al. [207].

While the meso- and macro-level patterns have been described so that
implementing them should be fairly unproblematic, in several cases alter-
natives have been provided. This shows how patterns can be implemented
in different ways to achieve the same gameplay functionality and offers
designers choices to use the most appropriate solutions.

One of the pattern presented, Sniper Locations, was actually not found
in the examined games. It was included to show how the pattern collection
can be extended to support additional types of gameplay (which in this
case already exists in other genres) through introducing patterns building
on already existing patterns. While this can also be done through adding
new fundamental components or micro-patterns, this has a larger risk of
fundamentally changing the design so resulting gameplay no longer is seen
as being part of the genre.

On a more theoretical level, the model of using Micro-, Meso-, and Macro-
patterns show how game design practice can be analyzed in greater detail
and be described to a level where different levels of abstract on the “me-
chanical” level of design patterns can be implemented in code for dungeon
RPGs. In future work we aim at showing how Meso-patterns can be given
the requirement to be mechanically recognizable, i.e. it should be possible for
an algorithm to recognize all instances of any given meso-pattern in a dun-
geon through a direct evaluation function. We hope that, despite the lim-
ited scope, the added rigor might be useful outside of procedural content
generation as well since it shows how the knowledge contained in many
previously identified patterns can be rephrased to be usuable more directly
in implementation.

224 notes

Concluding, the collection of patterns presented here provide an over-
view of level design for dungeons to a level of granularity that supports
the design of PCG dungeon systems. While implementation of such a sys-
tem is the next step in our work, we believe this collection has a value in
describing dungeon level design through a tiered model that can also sup-
port manual construction of dungeons as well as provide a tool for further
analysis of dungeon level designs.

notes

27http://rpgpatterns.soe.ucsc.edu/

14PA P E R 8 – P L AY E R E X P E R I E N C E E VA L U AT I O N O F
L E V E L G E N E R AT O R S I N T H E M A R I O A I F R A M E W O R K

Steve Dahlskog, Julian Togelius & Paul Davidsson

abstract

This paper describes a player experience-focused evaluation of several le-
vel generators for the Mario AI Framework. Two generators which were
recently devised by the authors, one based on n-grams and one based on
the design pattern recognition together with search-based generation, are
compared with several existing generators from previous studies. Results
show that both of the more recent generators produce significantly more en-
joyable and Mario-like levels than those produced by previous generators.

submitted

225

P L AY E R E X P E R I E N C E E VA L U AT I O N O F L E V E L
G E N E R AT O R S I N T H E M A R I O A I F R A M E W O R K

14.1 introduction

Over the last couple of years many methods for automatically generating
game levels have been suggested and based on these methods several gener-
ators have been developed. In most cases, multiple methods are applicable
to the same content generation problem, raising the question which method
to choose for tackling that problem. The answer to this question depends
on the particular goals one may have for the generation of game content.
Moreover, different games have different designs and may differ a lot from
each other. For some games, variation of layout is important and for some
games the challenge is more important. While many methods can be used
to compare and characterize level generators, ultimately one wants to know
which level generators are likely to be most favored by actual players of a
game. In order to do this, user studies need to be carried out.

In this paper we describe a user study that evaluates and compares
five different generators for the popular platform game Super Mario Bros.
(SMB) [158]. The generators are evaluated by the users according to four
criteria; how entertaining the generated level is to play, how challenging it
is, how well-made it is, and finally how SMB-like it is.

In the next section, some related work is reviewed. This is followed by
a description of the generators used in the experiment. We then describe
the experimental set-up and the results from the experiments. Finally, an
analysis of the results and a summary of the conclusions are provided.

227

228 paper 8

14.2 background

14.2.1 Related work

Game level generation is an area of Procedural Content Generation (PCG)
which has over the last couple of years gained an interest in the research
community. The research focus has been on different AI-methods to gener-
ate several different types of game content including games, game worlds,
game levels, items, quests, rules, and textures. The methods are diverse, cov-
ering different approaches like grammars [186], agents [58], evolutionary
computation [95], answer set programming [199], constraint solving [208]
and cellular automata [109].

Automatic level generation is not just an area for academic study, it has
a long history in the game industry where games like Beneath Apple Manor
(1978) [243], Akalabeth: World of Doom (1979) [84] and Rogue (1980) [232]
demonstrates the earliest examples of procedurally generated game levels.
The games are set in dungeons, where the player explores rooms and corri-
dors to find treasures and combat monsters.

In Game AI and PCG research another influential game has been the
center of attention, at least according to the amount of papers written
and generators developed, namely the seminal platform game Super Ma-
rio Bros. [158]. In academic Game AI, the Mario AI framework, developed
from Infinite Mario Bros (IMB) [172], has been been used in the Mario AI
competition both for NPC behaviour [223] and level generation [190]. Sev-
eral different PCG approaches have been developed for IMB, including
a data-driven model that predict different dimensions of player experi-
ence [169], design grammar and grammatical evolution [186], design pat-
terns [50], n-grams [52], and constraint solving combined with a mixed-
initiative tool [208].

In relation to content generation a set of papers have looked into user
studies for evaluation. Dahlskog and Togelius [49] presented a user study
comparing three different approaches for their pattern-based approach.
Shaker et al. [189] developed an adaptive system that directly asks players

14.2 background 229

their preferences and the paper describes an experiment where users com-
pares an adaptive with a non-adaptive system. Bakkes et al. [20] present
a system that balances the challenges in IMB levels together with a user
evaluation.

Another type of evaluation that is commonly used for IMB levels is (com-
putational) metrics-based evaluation, in particular the concept expressive
range, initially suggested by Smith and Whitehead [202] is used to mea-
sure two key metrics; linearity and leniency. Other metrics based on player
experience was suggested by Shaker et al. [186]. Later, Horn et al. [101],
compared seven different generators and the original SMB levels with the
use of six different expressivity metrics. Out of the seven different genera-
tors three generators; Notch, P-Notch and ORE are incorporated into our
study.

Of particular relevance to the work presented in this paper, is the study
conducted by Mariño et al. [135], who combined computational metrics
together with a user-study to compare four generators. Two novel genera-
tors were introduced in that paper; the user study saw 37 users playing 1

training level and 4 levels from the Notch, ORE, HCTA+P, and HCTA+R
generators.The users grade Enjoyment, Visual Aesthetics and Difficulty on
a 7-likert scale for each level where a low value indicates more enjoyable,
have better visual aesthetics and more challenging. Unlike Mariño et al.
[135], we use preference-based questionnaires, a different set of aesthetic
dimensions and a partially different set of level generators.

14.2.2 Purpose

Given the large amount of methods for automatic generation of levels, com-
parative and user experience-based evaluations is of great relevance. Most
published studies concern level generation methods, some focus on met-
rics but few a based on user studies for evaluation purposes and therefore
motivates user studies. A possible outcome is the possibility of identifying
areas for further study, and to find strengths and weaknesses of a particular
method or generator.

230 paper 8

Therefore the purpose of the paper is twofold, primarily to evaluate two
generators [50, 52] which both use different approaches to analyzing the
SMB levels and synthesizing the results of analysis to create new levels,
and secondly to relate level generators to each other. In this paper the com-
parison is made between n-gram, MLLG, ORE, Notch and P-Notch.

14.3 generators

We have evaluated five different generators: the n-gram Generator (n-gram),
the Multi-level Level Generator (MLLG), the Occupancy-Regulated Exten-
sion (ORE) generator, the Notch Level Generator (Notch) and finally, the
Parameterized Notch Level Generator (P-Notch), which are described be-
low (see Fig. 73 for examples of levels).The motivation for choosing each
generator is as follows; 1) n-gram and MLLG are new and have only been
evaluated according to metrics [52, 50], 2) ORE and Notch are used in other
metrics-based evaluations [101] and user studies [135], and finally 3) ORE
and P-Notch are different. In the study we use the exact same levels that
are used by Horn et al. [101].

14.3.1 n-gram Generator

The n-gram generator [52] applies an n-gram model, an idea that can be
traced back to information theory [194, 195] to mimicking the original SMB-
game. Dahlskog et al. [52] created training data for their model by slicing up
the original game’s levels in vertical slices (1 tile wide). The generation of a
level then basically works as stringing slices into sequences according to a
probabilistic language model that predicts the next slice in a level sequence
following a (n− 1)-order Markov model. In this setup for the experiment
we use levels that are generated with tri-grams.

14.3 generators 231

14.3.2 Multi-level Level Generator

The Multi-level Level Generator [50] is a pattern-based approach that com-
bines game design patterns [30, 48] and evolutionary computation. The ap-
proach uses a representation where human created content (i.e. levels taken
from the original game SMB) is cut to vertical slices called micro-patterns
and then a specific order of these micro-patterns are searched for to make
up meso-pattersn and thus new levels. The MLLG approach is an extension
to pattern-based approaches [49, 51] where the fitness function takes into ac-
count the order of the meso-patterns to follow a macro-pattern disposition
from levels in the original game. The advantage of this multiple patterns
layers is that repeated patterns are avoided.

14.3.3 Occupancy-Regulated Extension

The Occupancy-Regulated Extension generator (ORE) was initially desig-
ned to capture the aspect of human creativity to produce interesting level
designs [139] and was submitted to the Level Generation Track of the IEEE
CIS-sponsored 2010 Mario AI Championship [190]. The approach includes
a general geometry assembly algorithm with human-design-based level au-
thoring where a set of modules of human-made level designs (chunks) are
pieced together to form new levels. In the initial approach a library of 40

chunks was used to generate IMB levels. ORE is suitable for procedural
generation with mixed-initiative (cf. [208]) since it can use different weights
for chunks and different chunk libraries together with a post-processing
approach.

14.3.4 Notch

The Notch generator (Notch) is the standard generator that comes with the
Mario-AI framework since it was part of the original IMB [172]. It generates
levels from left to right and it uses simple checks to make sure the levels
are playable. It places different components to the levels according to prob-

232 paper 8

abilities of different components like number of gaps and the length of the
gaps.

14.3.5 Parameterized Notch

The Parameterized Notch generator (P-Notch) is described in [185]. This is
the standard Notch generator described above, which has been augmented
to take several parameters relating to the number and placement of gaps,
enemies and items. The levels generated here are based on a systematic
varying of the parameters to sample the parameter space evenly; the same
settings are used as in [101].

14.4 experiment set-up

We gathered 1000 generated levels from each generator and placed them in
a pool of levels and randomly picked pairs with the only constraint that the
same level could not be picked both times for a pairwise comparison. This
way, no two participants were likely to play the same levels; the order of
presentation of the levels (beyond the first level) were in no way influenced
by the type of level generator. We have 32 users playing 1 training level and
20 levels divided on pair-wise comparison resulting in 10 comparisons on
four aspects; how challenging it is, how well-made it is, and finally how
SMB-like it is. Every participant in the study received 10 pairs (20 levels
in total) together with a test level (the first level of the SMB [158] game
with one modification – Piranha Plants are present in the pipes of that
level to ensure that the level uses the complete vocabulary of level elements
available in the Mario AI Framewok). The test level was a mandatory pre-
trial-run of the Mario AI Framework where the player could get familiarised
with the specifics of the special version of the game. The parameters for for
the following generators: ORE, Notch and P-Notch are exactly the same as
in [101]. For n-gram it is the same as in [52] (n = 3) and for MLLG the same
random seed as in [50].

14.4 experiment set-up 233

14.4.1 Users

We recruited users by asking students present in two different computer
labs. All users stated they had previous experience of playing SMB-games
by filling out the survey form.One female and 31 male users with an age
span from 22 to 35 years (average age 24 years, σ 3.45 years and median
23 years). The users answered the survey questions in Swedish. The survey
questions and answers have been translated to English for the purpose of
this article.

14.4.2 Equipment

The tests were conducted on standardised desktop PCs in a traditional set-
up of a university computer lab, on the users own laptop or the evaluators’
laptop when the other possibilities were not available. The framework has
very low computational requirements, and therefore the particular hard-
ware used is not likely to have any effect on level generation or gameplay.

14.4.3 Levels

In order to anonymise the generators and their respective levels, all levels
were named “a” or “b” and each pair was numbered from 0 to 9. The data to
identify each level, pair and set of pairs were kept on a different computer
than the one the levels were tested on to certify that neither users or the
authors could check which generator or level were tested.

14.4.4 Questionnaires

The questionnaire was self-administered but with a test leader present to
answer questions and to provide help with the system evaluated. The ques-
tionnaire consisted of three parts: instructions, general questions and evalu-
ation questions. The second part contained questions about the user (name,
age, average amount of time playing games and which Mario games the

234 paper 8

user had played previously from a list of 14 of the platform games with a
check-box next to each title.Previously, computational metrics have looked
into aspects like how hard the levels were (Leniency) and how much vertical
variation the level had (Linearity) [202]. In a user study the users were asked
to grade Enjoyment, Visual Aesthetics and Difficulty [135] for IMB-levels. In
this paper we are interested in knowing more about the qualities of the
new generators and therefore we have chosen to ask about entertainment
value, how challenging, how well made and how Mario-like the levels are.
Enjoyment and entertaining may overlap from a player perspective but we
chose entertaining to include more aspects of game play experience. The
third part consisted of 4 questions per pair:

• Which level is the most entertaining one?

• Which level is the most challenging one?

• Which level is the most well made one?

• Which level is the most Mario-like?

The answers consisted of 4 check-boxes for the answers: “Level A”, “Level
B”, “Both A and B”, and finally, “None of them”.

14.5 results and analysis

32 persons accepted to participate in the experiment28. In table 41 the as-
pect of most entertaining levels by row against column is shown (example:
in row 1 the n-gram is seen as most entertaining against MLLG 11 times
whereas MLLG is seen as most entertaining against n-gram 13 times).

In the tables, we have highlighted significant results as follows: * to in-
dicate at the 99.9% confidence level, ** equals 99.5%, *** equals 99%, and †
equals 95%.

For each of the evaluation questions (which level is most) 1) Entertaining,
2) Challenging, 3) Well made and 4) Mario-like we performed a Binomial
test for each pair of compared generators thus allowing the testing of the hy-
pothesis f = g (f and g being different generators) when we determine the

14.5 results and analysis 235

Table 41: Most entertaining levels by row against levels column.

n-gram MLLG ORE Notch P-Notch

n-gram - 11/13 9/12 26/3* 22/3*

MLLG - 17/3*** 14/7 18/0*

ORE - 16/3*** 23/1*

Notch - 8/1†
P-Notch -

Table 42: Most challenging levels by row against levels column.

n-gram MLLG ORE Notch P-Notch

n-gram - 10 /14 13/12 26/3* 26/3*

MLLG - 15/7 18/3** 19/1*

ORE - 16/4*** 22/1*

Notch - 8/4

P-Notch -

Table 43: Most well-made levels by row against levels column.

n-gram MLLG ORE Notch P-Notch

n-gram - 7/17† 10/16 22/2* 21/5**

MLLG - 16/2* 12/8 17/1*

ORE - 16/5† 18/3**

Notch - 5/2

P-Notch -

236 paper 8

Table 44: Most Mario-like levels by row against levels column.

n-gram MLLG ORE Notch P-Notch

n-gram - 12/8 19/8† 23/3* 18/8†
MLLG - 12/4† 10/6 14/5†
ORE - 12/9 13/4†
Notch - 8/2

P-Notch -

Table 45: Compared with the same generator part 1.

Most entertaining levels

Both None

n-gram 5 0

MLLG 2 1

ORE 3 1

Notch 3 1

P-Notch 1 9

Most challenging levels

Both None

n-gram 3 0

MLLG 3 2

ORE 4 1

Notch 2 2

P-Notch 1 9

14.5 results and analysis 237

Table 46: Compared with the same generator part 2.

Most well-made levels

Both None

n-gram 4 0

MLLG 6 4

ORE 1 4

Notch 3 0

P-Notch 2 10

Most Mario-like levels

Both None

n-gram 1 3

MLLG 7 3

ORE 2 5

Notch 3 3

P-Notch 1 10

238 paper 8

respondents’ preference when trying out two generators i.e. it will indicate
whether there is a significant preference between the two generators.

14.5.1 Entertaining

The Linear Level Generator [52] was considered more entertaining than the
Notch and P-Notch to the 99% confidence level.

The Multi-level Level Generator [50] was considered more entertaining
than the ORE (at the 99% confidence level) and P-Notch (at the 99.9% con-
fidence level) but not (!) really against NLG (significant difference only at
85% confidence level).

The ORE generator [139] was considered more entertaining than Notch
and P-Notch (at the 99% and 99.9% confidence level respectively). The com-
parisons between Notch and P-Notch favours Notch (at the 95% confidence
level) but the few concrete comparisons with an outcome indicate that the
users think that they are very similar in regards to the entertainment aspect.

14.5.2 Challenging

The Linear Level Generator was considered more challenging than the
Notch and P-Notch with a result indicating a significant difference in pref-
erence at the 99.9% confidence level.

The MLLG was preferred against ORE, Notch and P-Notch with a results
indicating a significant difference in preference above 90% confidence level
(90%, 99.5% and 99.9% respectively). ORE was also considered more chal-
lenging than Notch and P-Notch above the 99% confidence level (99% and
99.9% respectively).

14.5.3 Well made

The MLLG is considered producing well made levels than n-gram genera-
tor, ORE and P-Notch (95%, 99.9% and 99.9%), whereas n-gram generator is

14.6 discussion 239

outperforming Notch and P-Notch (99.9% and 99.5%). ORE 95% and 99.5%
against Notch and P-Notch.

14.5.4 Mario-like

n-gram generator is considered more Mario-like than ORE (95%) Notch
(99.9%) and P-Notch (95%). MLLG is considered more Mario-like than ORE
(95%) and P-Notch (95%) but not more than Notch, however all comparison
pairs sums up to fewer than 20 clear comparisons which in it self indicate
that there are some users finding them similar in that aspect. ORE seem
more Mario-like only against P-Notch (95%) but also with fewer than 20

clear comparisons.

14.5.5 Intra-generator comparisons

In table 45 and 46 the n-gram generator gets “both” more than “none” in 3

out 4 cases. Whereas P-Notch gets “none” in all cases including the highest
numbers.

14.6 discussion

Looking at the aspect of how the generators seem entertaining to the users,
the Notch and P-Notch generators tend to provide less entertainment value
in comparison to the n-gram, MLLG and ORE generators. When Notch and
P-Notch are compared to each other, the results indicate that they are often
perceived as equally (both/none) entertaining, challenging, well-made and
Mario-like but also that users prefer Notch to P-Notch. If we include the in-
ternal comparison P-Notch more often get the verdict “none” (see table 45

and 46) on all judged aspects. Notch, P-Notch and ORE has been compared
previously [101] and P-Notch provides fewer threats (high leniency) and
many overlapping platforms (high density) for the player.ORE and Notch
has been compared both by users and by computational metrics in [135]
where the users found Notch more enjoyable and to have better visual aes-

240 paper 8

thetics but ORE being more difficult. The difference here could partly be
due that [135] use Likert scale ratings, whereas we use preference indica-
tions, which have been found to be more reliable [244]. However, the met-
rics calculated by Mariño et al. [135] showed ORE-generated levels being
less linear and more dense and that Notch was slightly more lenient.

With respect to the intra-generator comparisons, it was often hard for the
users to distinguish between levels of the same generator. Exceptions from
this were the following comparisons: n-gram (entertaining, challenging lev-
els, well-made), Notch (well-made) and P-Notch (all aspects). However, too
few comparisons were made to allow for any strong conclusions.

It stands to reason that the n-gram generator, which mostly copies the
micro-structure of the original Super Mario Bros levels, produces the most
Mario-like levels of all generators. Given the close resemblance to the orig-
inal Mario levels, one could have expected that this generator’s output
would be perceived as less entertaining. However, the results do not ap-
pear to bear this out, as n-gram-generated levels were seen as similarly
entertaining to ORE- and MLLG-generated levels. This points out that this
kind of data-driven level generation, where level generators are trained on a
corpus of level content and reproduce some of the structure of those levels,
is a promising avenue to pursue further, including using this approach in
other domains. For ORE-generated levels we can see that it seem to be per-
ceived to be better than Notch and P-Notch on all the evaluated aspects ex-
cept for not being decisively more Mario-like than Notch (an aspect shared
with MLLG). The intra-generator comparison between Notch and P-Notch
indicate that parameter settings is important when tuning the generator,
something that further studies could look into.

14.7 conclusion

This paper described the methods and results for an evaluation of the player
experience of levels generated by several different level generators for the
Mario AI Framework. Two of those generators were previously proposed
by the authors. It was found that the new generators, the n-gram generator

notes 241

and the multilevel pattern-based generator, were both significantly more
entertaining and Mario-like than both the default Notch and parameterized
Notch generator, as well as the ORE generator. These results validate the
two new proposed methods, which both implement different approaches to
analyzing the original Super Mario Bros levels and synthesizing the analysis
results into new levels. More generally, it suggests that such analysis-based
generation could be useful in other procedural content generation domains.

(a)

(b)

(c)

(d)

(e)

Figure 73: Example of levels: a) n-gram, b) MLLG, c) ORE, d) Notch and e) P-Notch.

notes

28One person did only answer three out of four questions for two pairs (Mario-like for the
first pair and entertaining for the 6th pair, both these questions were comparisons between the
same generator but different levels). All other participants answered all questions.

B I B L I O G R A P H Y

[1] Espen Aarseth. From Hunt the Wumpus to Everquest: Introduction
to Quest Theory. In Proceedings of the 4th International Conference on
Entertainment Computing, ICEC’05, pages 496–506, Berlin, Heidelberg,
2005. Springer-Verlag. ISBN 3-540-29034-6, 978-3-540-29034-6. doi:
10.1007/11558651_48.

[2] Espen Aarseth. Allegories of space: The question of spatiality in com-
puter games. In Friedrich von Borries, Steffen P. Walz, and Matthias
Böttger, editors, Space Time Play: Synergies Between Computer Games, Ar-
chitecture and Urbanism: the Next Level, pages 44–55. BirkHäuser, 2007.

[3] Acornsoft. Elite. [Digital game], 1984.

[4] Kirsten Acuna. ’Grand Theft Auto V’ Cost More To Make Than
Nearly Every Hollywood Blockbuster Ever Made. [WWW], Septem-
ber 2013. URL http://www.businessinsider.com/gta-v-cost-more-

than-nearly-every-hollywood-blockbuster-2013-9?IR=T.

[5] E. Adams and J. Dormans. Game Mechanics: Advanced Game De-
sign. Voices That Matter. Pearson Education, Limited, 2012. ISBN
9780321820273.

[6] Tarn Adams. Slaves to Armok: God of Blood Chapter II: Dwarf
Fortress. [Digital game], August 2006.

[7] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pat-
tern Language: Towns, Buildings, Construction. Oxford University Press,
New York, U.S.A., 1977.

[8] Valter Alves and Licinio Roque. Design Patterns in Games: the case
for Sound Design. In Proceedings of the Second Workshop on Design
Patterns in Games, DPG ’13, May 2013.

243

244 bibliography

[9] Charles Ames. The Markov process as a compositional model: A
survey and tutorial. Leonardo, 22(2):175–187, 1989.

[10] Erik Andersen. Optimizing Adaptivity in Educational Games. In Pro-
ceedings of the International Conference on the Foundations of Digital Ga-
mes, FDG ’12, pages 279–281, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1333-9. doi: 10.1145/2282338.2282398.

[11] James Arnold and Rob Alexander. Testing Autonomous Robot Con-
trol Software Using Procedural Content Generation. In Proceedings of
the 32nd International Conference on Computer Safety, Reliability, and Se-
curity, volume 8153 of SAFECOMP 2013, pages 33–44, New York, NY,
USA, 2013. Springer-Verlag New York, Inc. ISBN 978-3-642-40792-5.
doi: 10.1007/978-3-642-40793-2_4.

[12] D. Ashlock, C. Lee, and C. McGuinness. Simultaneous Dual Level
Creation for Games. Computational Intelligence Magazine, IEEE, 6(2):
26–37, May 2011. ISSN 1556-603X. doi: 10.1109/MCI.2011.940622.

[13] D. Ashlock, C. Lee, and C. McGuinness. Search-Based Procedural
Generation of Maze-Like Levels. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):260–273, 2011. ISSN 1943-068X. doi:
10.1109/TCIAIG.2011.2138707.

[14] Daniel Ashlock and Cameron McGuinness. Automatic Generation of
Fantasy Role-playing Modules. In Proceedings of the 2014 IEEE Confer-
ence on Computational Intelligence and Games. IEEE, August 2014.

[15] Atari Games. Gauntlet. [Digital game], 1985.

[16] Atari Inc. Pong. [Digital game], 1972.

[17] Atari Inc. Asteroids. [Arcade game], 1979.

[18] Avalanche Studios. Just Cause. [Digital game], March 2006.

[19] Avalanche Studios. Just Cause 2. [Digital game], March 2010.

bibliography 245

[20] S. Bakkes, S. Whiteson, G. Li, G. V. Vişniuc, E. Charitos, N. Heijne,
and A. Swellengrebel. Challenge balancing for personalised game
spaces. In IEEE Games Media Entertainment 2014, Oct 2014. doi:
10.1109/GEM.2014.7047971.

[21] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter
Nordin. Genetic Programming: An Introduction: on the Automatic Evo-
lution of Computer Programs and Its Applications. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1998. ISBN 1-55860-510-X.

[22] Matt Barton. Dungeons and Desktops: The History of Computer Role-
playing Games. A K Peters Ltd, 2008. ISBN 1568814119.

[23] H. Barwood and N. Falstein. 400 Rules Project. Web page, February
2015. URL http://gameonwebdesign.com/400project.html.

[24] M. Beeler, R. W. Gosper, and R. Schroeppel. HAKMEM. Technical
Report AIM 239, Artificial Intelligence Laboratory, Massachusetts In-
stitute of Technology, 1972. URL ftp://publications.ai.mit.edu/

ai-publications/pdf/AIM-239.pdf.

[25] Karl Bergström, Staffan Björk, and Sus Lundgren. Exploring aes-
thetical gameplay design patterns: Camaraderie in four games. In
Artur Lugmayr, Heljä Franssila, Olli Sotamaa, Christian Safran, and
Timo Aaltonen, editors, Proceedings of the 14th International Academic
MindTrek Conference: Envisioning Future Media Environments, MindTrek
’10, pages 17–24, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0011-7. doi: 10.1145/1930488.1930493.

[26] Bethesda Game Studios. The Elder Scrolls V: Skyrim. [Digital game],
2013.

[27] Bethesda Softworks. The Elder Scrolls II: Daggerfall. [Digital game],
August 1996.

[28] BioWare. Neverwinter Nights. [Digital game], 2002.

246 bibliography

[29] S. Björk. Game Design Patterns 2.0. Web page, March 2013. URL
http://gdp2.tii.se/.

[30] S. Björk and J. Holopainen. Patterns in Game Design. Charles River
Media game development series. Charles River Media, 2005. ISBN
9781584503545.

[31] Staffan Björk, Sus Lundgren, and Jussi Holopainen. Game Design
Patterns. In Proceedings of the 2003 DiGRA International Conference:
Level Up, 2003.

[32] Blizzard Entertainment. StarCraft. [Digital game], March 1998.

[33] Blizzard Entertainment. World of Warcraft. [Digital game], March
2004.

[34] Blizzard North. Diablo. [Digital game], 1996.

[35] Barry W. Boehm. Understanding and controlling software
costs. Journal of Parametrics, 8(1):32–68, 1988. doi: 10.1080/
10157891.1988.10472819.

[36] H. J. Bremermann. Optimization Through Evolution and Recombi-
nation. In M. C. Yovits, G. T. Jacobi, and G. D. Goldstein, editors,
Self-Organizing Systems. Spartan Books, 1962.

[37] Cameron Browne. Elegance in Game Design. IEEE Transactions on
Computational Intelligence and AI in Games, 4(3):229–240, 2012. ISSN
1943-068X. doi: 10.1109/TCIAIG.2012.2197621.

[38] Cameron Browne and Frederic Maire. Evolutionary Game Design.
IEEE Transactions on Computational Intelligence and AI in Games, 2(1):
1–16, 2010. ISSN 1943-068X. doi: 10.1109/TCIAIG.2010.2041928.

[39] Edmund K. Burke, James P. Newall, and Rupert F. Weare. Initial-
ization Strategies and Diversity in Evolutionary Timetabling. Evolu-
tionary Computation, 6(1):81–103, March 1998. ISSN 1063-6560. doi:
10.1162/evco.1998.6.1.81.

bibliography 247

[40] Alessandro Canossa, Staffan Björk, and Mark J. Nelson. X-COM: UFO
Defense vs. XCOM: Enemy Unknown— using gameplay design pat-
terns to understand game remakes. In Proceedings of the Ninth Interna-
tional Conference on the Foundations of Digital Games, 2014.

[41] Daniel Cermak-Sassenrath. Experiences with design patterns for old-
school action games. In Proceedings of The 8th Australasian Conference
on Interactive Entertainment: Playing the System, IE ’12, pages 14:1–
14:9, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1410-7. doi:
10.1145/2336727.2336741.

[42] K. Compton and M. Mateas. Procedural Level Design for Platform
Games. In Proceedings of the 2nd Artificial Intelligence and Interactive
Digital Entertainment Conference, 2006.

[43] Kate Compton, Joe Osborn, and Michael Mateas. Generative Methods.
In Proceedings of the 2013 Workshop on Procedural Content Generation in
Games, 2013.

[44] Michael Cook and Simon Colton. Ludus Ex Machina: Building A 3D
Game Designer That Competes Alongside Humans. In Simon Colton,
Dan Ventura, Nada Lavrač, and Michael Cook, editors, Proceedings
of the Fifth International Conference on Computational Creativity, pages
54–62, Ljubljana, Slovenia, June 2014.

[45] Michael Cook, Simon Colton, and Alison Pease. Aesthetic Considera-
tions for Automated Platformer Design. In AIIDE, 2012.

[46] Core Design. Tomb Raider. [Digital game], 1996.

[47] William Crowther. Colossal Cave Adventure. [Digital game], 1976.

[48] Steve Dahlskog and Julian Togelius. Patterns and Procedural Content
Generation: Revisiting Mario in World 1 Level 1. In Proceedings of
the First Workshop on Design Patterns in Games, DPG ’12, pages 1:1–
1:8, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1854-9. doi:
10.1145/2427116.2427117.

248 bibliography

[49] Steve Dahlskog and Julian Togelius. Patterns as Objectives for Level
Generation. In Proceedings of the Second Workshop on Design Patterns in
Games, DPG ’13, May 2013.

[50] Steve Dahlskog and Julian Togelius. A Multi-level Level Generator.
In Proceedings of the 2014 IEEE Conference on Computational Intelligence
and Games, pages 389–396. IEEE, August 2014.

[51] Steve Dahlskog and Julian Togelius. Procedural Content Generation
Using Patterns as Objectives. In Antonio M. Mora Anna I. Esparcia-
Alcázar, editor, Applications of Evolutionary Computation, volume 8602

2014 of Lecture Notes in Computer Science, pages 325–336. Springer-
Verlag, 2014.

[52] Steve Dahlskog, Julian Togelius, and Mark J. Nelson. Linear levels
through n-grams. In Proceedings of the 18th International Academic
MindTrek Conference, pages 200–206, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3006-0. doi: 10.1145/2676467.2676506.

[53] Steve Dahlskog, Staffan Björk, and Julian Togelius. Patterns, Dun-
geons and Generators. In Proceedings of the 10th International Confer-
ence on Foundations of Digital Games, FDG ’15, 2015.

[54] Isaac M. Dart, Gabriele De Rossi, and Julian Togelius. SpeedRock:
procedural rocks through grammars and evolution. In Proceedings
of the 2nd International Workshop on Procedural Content Generation in
Games, PCGames ’11, pages 8:1–8:4, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0872-4. doi: 10.1145/2000919.2000927.

[55] H. Desurvire, M. Caplan, and J. Toth. Using Heuristics to Evaluate
the Playability of Games. In CHI 2004 Extended Abstracts on Human
Factors in Computing Systems, April 2004.

[56] EdsgerW. Dijkstra. On the role of scientific thought. In Selected Writ-
ings on Computing: A personal Perspective, Texts and Monographs in
Computer Science, pages 60–66. Springer New York, 1982. ISBN 978-
1-4612-5697-7. doi: 10.1007/978-1-4612-5695-3_12.

bibliography 249

[57] Dajana Dimovska, Douglas Wilson, Kennett Wong, Lars Bojsen-
Moeller, Lau Korsgaard, Mads Lyngvig, and Robin Di Capua. Dark
Room Sex Game. [Digital game], 2008.

[58] Jonathon Doran and Ian Parberry. Controlled Procedural Terrain Ge-
neration Using Software Agents. IEEE Transactions on Computational
Intelligence and AI in Games, 2(2):111–119, 2010.

[59] Jonathon Doran and Ian Parberry. Towards procedural quest genera-
tion: A structural analysis of RPG quests. Technical Report LARC–
2010–02, Laboratory for Recreational Computing, Dept. of Computer
Science & Engineering, Univ. of North Texas, May 2010.

[60] Jonathon Doran and Ian Parberry. A prototype quest generator based
on a structural analysis of quests from four mmorpgs. In Proceedings
of the 2nd International Workshop on Procedural Content Generation in
Games, PCGames ’11, pages 1:1–1:8, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0872-4. doi: 10.1145/2000919.2000920.

[61] J. Dormans and S. Bakkes. Generating missions and spaces for
adaptable play experiences. IEEE Transactions on Computational In-
telligence and AI in Games, 3(3):216–228, 2011. ISSN 1943-068X. doi:
10.1109/TCIAIG.2011.2149523.

[62] Joris Dormans. Adventures in Level Design: Generating Missions and
Spaces for Action Adventure Games. In Proceedings of the 2010 Work-
shop on Procedural Content Generation in Games, PCGames ’10, pages
1:1–1:8, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0023-0.
doi: 10.1145/1814256.1814257.

[63] Joris Dormans and Stefan Leijnen. Combinatorial and exploratory
creativity in procedural content generation. In Proceedings of the 2013
Workshop on Procedural Content Generation in Games, 2013.

[64] Christopher Dristig Stenström and Staffan Björk. Understanding
Combat Design in Computer Role-Playing Games. In Proceedings of
the Second Workshop on Design Patterns in Games, DPG ’13, May 2013.

250 bibliography

[65] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Comput-
ing. SpringerVerlag, 2 edition, 2015. ISBN 978-3-662-44874-8.

[66] Entertainment Software Association. Essential facts about the
U.S. computer and video game industry, 2013. URL http://

www.theesa.com/facts/pdfs/ESA_EF_2013.pdf.

[67] Entertainment Software Association. Essential facts about the com-
puter and video game industry, 2015. URL http://www.theesa.com/

wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf.

[68] Evolutionary Games. Galactic Arms Race. [Digital game], 2010.

[69] Farbrausch. .kkrieger. [Digital game], 2004.

[70] Jay Fenlason, Kenny Woodland, Mike Thome, Jonathan Payne, An-
dries Brouwer, and Don Kneller. Hack. [Digital game], 1982-1985.

[71] Lucas Ferreira and Claudio Toledo. A search-based approach for
generating angry birds levels. In Proceedings of the 9th IEEE Inter-
national Conference on Computational Intelligence in Games, 2014. doi:
10.1109/CIG.2014.6932912.

[72] Firaxis Games. Sid Meier’s Alpha Centauri. [Digital game], 1999.

[73] Firaxis Games. Civilization IV (PC game), 2005.

[74] Firaxis Games. XCOM: Enemy Unknown. [Digital game], 2012.

[75] Firebird. The Sentinel. [Digital game], 1986.

[76] Gerhard Fischer, Kumiyo Nakakoji, Jonathan Ostwald, Gerry Stahl,
and Tamara Sumner. Embedding computer-based critics in the con-
texts of design. In Proceedings of the INTERACT ’93 and CHI ’93 Con-
ference on Human Factors in Computing Systems, CHI ’93, pages 157–
164, New York, NY, USA, 1993. ACM. ISBN 0-89791-575-5. doi:
10.1145/169059.169133.

bibliography 251

[77] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial intelligence through
simulated evolution. Wiley, Chichester, WS, UK, 1966.

[78] Tracy Fullerton. Game Design Workshop - A Playcentric Approach to Cre-
ating Innovative Games. Morgan Kaufmann, New York, U.S.A., second
edition, 2008.

[79] Tracy Fullerton. Game Design Workshop: A Playcentric Approach to Creat-
ing Innovative Games. A K Peters/CRC Press, New York, U.S.A., third
edition, 2014.

[80] S. Gallagher and S. H. Park. Innovation and Competition in Standard-
Based Industries: A Historical Analysis of the U.S. Home Video Game
Market. IEEE Transactions on Engineering Management, 49(1), February
2002.

[81] Game Freak. Pokémon Red/Blue Version. [Digital game], 1996.

[82] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, U.S.A., 1994.

[83] Gareth Bourn. No Man’s Sky. [Digital game], June 2016.

[84] Richard Garriott. Akalabeth: World of Doom. [Digital game], 1979.

[85] Richard Garriott. Ultima. [Digital game], 1981.

[86] Richard Garriott. Ultima II: The Revenge of the Enchantress. [Digital
game], 1982.

[87] Gary Gygax. Dungeon Masters Guide (sic!). [Role-playing game],
1979.

[88] Gary Gygax and Dave Arneson. Dungeons & Dragons. [Role-playing
game], 1974.

[89] Gary Gygax and Dave Arneson and Frank Mentzer. Dungeons &
Dragons Set 1: Basic Rules. [Role-playing game], 1983.

252 bibliography

[90] Gearbox Software. Borderlands. [Digital game], 2009.

[91] Gearbox Software. Borderlands 2. [Digital game], 2012.

[92] G.A. Gorry and M.S. Scott-Morton. A Framework for Management
Information Systems. Sloan Management Review, 13(1):55–70, 1971.

[93] J. Gregory. Game Engine Architecture. Taylor & Francis, 2nd edition,
20014. ISBN 9781466560017.

[94] K. Hartsook, A. Zook, S. Das, and M.O. Riedl. Toward supporting
stories with procedurally generated game worlds. In Computational
Intelligence and Games (CIG), 2011 IEEE Conference on, pages 297–304,
Aug 2011. doi: 10.1109/CIG.2011.6032020.

[95] Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley. Evolving
content in the Galactic Arms Race video game. In Proceedings of the 5th
international conference on Computational Intelligence and Games, pages
241–248. IEEE, 2009. ISBN 978-1-4244-4814-2.

[96] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexan-
dru Iosup. Procedural Content Generation for Games: A Survey. ACM
Trans. Multimedia Comput. Commun. Appl., 9(1):1:1–1:22, 2013. ISSN
1551-6857. doi: 10.1145/2422956.2422957.

[97] R. Hevner, A., T. March, S., J. Park, and S. Ram. Design science in
information systems research. MIS Quarterly, 28:75–105, 2004.

[98] Lejaren A. Hiller and Robert A. Baker. Computer Cantata: An investi-
gation of compositional procedure. Perspectives of New Music, 3:62–90,
1964.

[99] John H. Holland. Genetic Algorithms and the Optimal Allocation of
Trials. SIAM Journal on Computing, 2(2):88–105, 06 1973.

[100] John H. Holland. Erratum: Genetic Algorithms and the Optimal Al-
location of Trials. SIAM Journal on Computing, 3(4):326, 12 1974.

bibliography 253

[101] Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian
Togelius. A Comparative Evaluation of Procedural Level Generators
in the Mario AI Framework. In Proceedings of the 9th International
Conference on Foundations of Digital Games, FDG ’14, 2014.

[102] Kenneth Hullett and Jim Whitehead. Design Patterns in FPS Levels.
In FDG ’10: Proceedings of the Fifth International Conference on the Foun-
dations of Digital Games, pages 78–85, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-937-4. doi: 10.1145/1822348.1822359.

[103] Robin Hunicke, Marc Leblanc, and Robert Zubek. MDA: A Formal
Approach to Game Design and Game Research. In In Proceedings of
the Challenges in Games AI Workshop, Nineteenth National Conference of
Artificial Intelligence, pages 1–5. AAAI Digital Library, 2004.

[104] Infocom. Zork 1. [Digital game], 1980.

[105] Interactive Data Visualization, Inc. Speedtree. [Software], 2011.

[106] Interplay Productions. Tales of the Unknown, Volume I: The Bard’s
Tale. [Digital game], 1985.

[107] Introversion Software. Darwinia. [Digital game], March 2005.

[108] Blake Ives, Scott Hamilton, and Gordon B. Davis. A framework for
research in computer-based management information systems. Man-
agement Science, 26(9):910–934, 1980. doi: 10.1287/mnsc.26.9.910.

[109] Lawrence Johnson, Georgios N. Yannakakis, and Julian Togelius. Cel-
lular automata for real-time generation of infinite cave levels. In Pro-
ceedings of the 2010 Workshop on Procedural Content Generation in Games,
pages 10:1–10:4, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0023-0. doi: 10.1145/1814256.1814266.

[110] J.C. Jones. Design Methods. Architecture Series. Wiley, 1992. ISBN
9780471284963.

254 bibliography

[111] Anna Jordanous. Evaluating evaluation: Assessing progress in com-
putational creativity research. In Proceedings of the second international
conference on computational creativity (ICCC-11). Mexico City, Mexico,
pages 102–107, 2011.

[112] D. Jurafsky and J.H. Martin. Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall series in artificial intelligence. Pear-
son Prentice Hall, 2nd edition, 2008. ISBN 9780131873216.

[113] S. Karakovskiy and J. Togelius. The Mario AI Benchmark and Compe-
titions. IEEE Transactions on Computational Intelligence and AI in Games,
4(1):55–67, 2012. ISSN 1943-068X. doi: 10.1109/TCIAIG.2012.2188528.

[114] Slava M. Katz. Estimation of probabilities from sparse data for the
language model component of a speech recognizer. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 35(3):400–401, 1987.

[115] Aphra Kerr. The Business and Culture of Digital Games: Gamework and
Gameplay. Sage Publications, Inc., 2006. ISBN 9781412900478.

[116] M. Kerssemakers, J. Tuxen, J. Togelius, and G.N. Yannakakis. A pro-
cedural procedural level generator generator. In Computational Intelli-
gence and Games (CIG), 2012 IEEE Conference on, pages 335–341, 2012.
doi: 10.1109/CIG.2012.6374174.

[117] Rilla Khaled, Mark J. Nelson, and Pippin Barr. Design Metaphors for
Procedural Content Generation in Games. In Proceedings of the 2013
ACM SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, pages 1509–1518, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-1899-0. doi: 10.1145/2470654.2466201.

[118] Robert Alan Koeneke and Jimmey Wayne Todd. Moria. [Digital
game], 1994.

[119] R. Koster. Theory of Fun for Game Design. O’Reilly Media, 2004. ISBN
144931497X.

bibliography 255

[120] John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
ISBN 0-262-11170-5.

[121] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge, MA, USA, 1994. ISBN 0-262-11189-
6.

[122] Brend Kreimeier. The case for game design patterns. 2002. URL
http://www.gamasutra.com/features/20020313/kreimeier_00.htm.

[123] Daniel Lawrence. Telengard. [Digital game], 1982.

[124] P.D. Lebling, M.S. Blank, and T.A Anderson. Special Feature Zork:
A Computerized Fantasy Simulation Game. Computer, 12(4):51–59,
April 1979. ISSN 0018-9162. doi: 10.1109/MC.1979.1658697.

[125] Kwong-Sak Leung and Yong Liang. Adaptive elitist-population based
genetic algorithm for multimodal function optimization. In Erick
Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis, Ra-
jkumar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K. Stan-
dish, Graham Kendall, Stewart W. Wilson, Mark Harman, Joachim
Wegener, Dipankar Dasgupta, Mitchell A. Potter, Alan C. Schultz,
Kathryn A. Dowsland, Natasa Jonoska, and Julian F. Miller, editors,
GECCO, volume 2723 of Lecture Notes in Computer Science, pages 1160–
1171. Springer, 2003. ISBN 3-540-40602-6.

[126] Chris Lewis, Noah Wardrip-Fruin, and Jim Whitehead. Motivational
game design patterns of ’ville games. In Proceedings of the International
Conference on the Foundations of Digital Games, FDG ’12, pages 172–
179, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1333-9. doi:
10.1145/2282338.2282373.

[127] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul MB Vitányi. The similar-
ity metric. Information Theory, IEEE Transactions on, 50(12):3250–3264,
2004.

256 bibliography

[128] Antonios Liapis and Georgios N. Yannakakis. Refining the paradigm
of sketching in ai-based level design. In Proceedings of the AAAI Artifi-
cial Intelligence for Interactive Digital Entertainment Conference, 2015.

[129] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. Gen-
erating map sketches for strategy games. In Proceedings of Applica-
tions of Evolutionary Computation, volume 7835, LNCS, pages 264–273.
Springer, 2013.

[130] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. Sen-
tient sketchbook: Computer-aided game level authoring. In Proceed-
ings of the 8th Conference on the Foundations of Digital Games, pages
213–220, 2013.

[131] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. To-
wards a generic method of evaluating game levels. In Proceedings of
the AAAI Artificial Intelligence for Interactive Digital Entertainment Con-
ference, 2013.

[132] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. De-
signer modeling for sentient sketchbook. In Proceedings of the IEEE
Conference on Computational Intelligence and Games (CIG), 2014.

[133] Sus Lundgren and Staffan Björk. Neither playing nor gaming: pot-
tering in games. In Magy Seif El-Nasr, Mia Consalvo, and Steven K.
Feiner, editors, FDG, pages 113–120. ACM, 2012. ISBN 978-1-4503-
1333-9.

[134] Salvatore T. March and Gerald F. Smith. Design and natural science
research on information technology. Decision Support Systems, 15(4):
251–266, 1995. ISSN 0167-9236. doi: 10.1016/0167-9236(94)00041-2.

[135] Julian Mariño, Willian Reis, and Levi Lelis. An Empirical Evaluation
of Evaluation Metrics of Procedurally Generated Mario Levels. In
Arnav Jhala and Nathan Sturtevant, editors, AIIDE, pages 44–50. The
AAAI Press, 2015.

bibliography 257

[136] Glenn A. Martin and Charles E. Hughes. A Scenario Generation
Framework for Automating Instructional Support in Scenario-based
Training. In Proceedings of the 2010 Spring Simulation Multiconference,
SpringSim ’10, pages 35:1–35:6, San Diego, CA, USA, 2010. Society
for Computer Simulation International. ISBN 978-1-4503-0069-8. doi:
10.1145/1878537.1878574.

[137] Glenn A. Martin, Charles E. Hughes, Sae Schatz, and Denise Nichol-
son. The Use of Functional L-systems for Scenario Generation in Se-
rious Games. In Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, PCGames ’10, pages 6:1–6:5, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0023-0. doi: 10.1145/1814256.1814262.

[138] Richard O. Mason and Ian I. Mitroff. A program for research on
management information systems. Management Science, 19(5):475–487,
1973. doi: 10.1287/mnsc.19.5.475.

[139] Peter Mawhorter and Michael Mateas. Procedural Level Generation
Using Occupancy-Regulated Extension. In Proceedings of the IEEE Con-
ference on Computational Intelligence in Games, 2010.

[140] Maxis. Spore. [Digital game], 2008.

[141] Cameron McGuinness and Daniel Ashlock. Decomposing the level
generation problem with tiles. In IEEE Congress on Evolutionary Com-
putation, pages 849–856. IEEE, 2011.

[142] Cameron McGuinness and Daniel Ashlock. Decomposing the level
generation problem with tiles. In IEEE Congress on Evolutionary Com-
putation, pages 849–856. IEEE, 2011.

[143] Morgan McGuire and Odest Chadwicke Jenkins. Creating Ga-
mes: Mechanics, Content, and Technology. CRC Press, 2008. ISBN
9781439865927.

[144] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford,
and D. Parker. ScriptEase: Generative Design Patterns for Computer

258 bibliography

Role-Playing Games. In Proceedings of the 19th IEEE international con-
ference on Automated software engineering, ASE ’04, pages 88–99, Wash-
ington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2131-2.
doi: 10.1109/ASE.2004.63.

[145] Matthew McNaughton, James Redford, Jonathan Schaeffer, and Du-
ane Szafron. Patttern-Based AI Scripting Using ScriptEase. In Yang
Xiang and Brahim Chaib-draa, editors, Advances in Artificial Intelli-
gence, volume 2671 of Lecture Notes in Computer Science, pages 35–
49. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-40300-5. doi:
10.1007/3-540-44886-1_6.

[146] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolu-
tion Programs (3rd Ed.). Springer-Verlag, London, UK, UK, 1996. ISBN
3-540-60676-9.

[147] MicroProse. Civilization. [Digital game], 1991.

[148] MicroProse. Sid Meier’s Colonization. [Digital game], 1994.

[149] Ian Millington and John Funge. Artificial Intelligence for Games. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition,
2009. ISBN 0123747317, 9780123747310.

[150] Mojang. Minecraft. [Digital game], May 2009.

[151] N. Montfort and I. Bogost. Racing the Beam: The Atari Video Computer
System. Platform Studies. MIT Press, 2009. ISBN 9780262012577.

[152] Richard Moss. 7 uses of procedural generation that all de-
velopers should study. [Web page], January 2016. URL
http : / / www.gamasutra.com / view / news / 262869 / 7 _ uses _ of _

procedural_generation_that_all_developers_should_study.php.

[153] Mythos Games. UFO: Enemy Unknown (marketed as X-COM: UFO
Defense in NA). [Digital game], 1994.

bibliography 259

[154] Mark Nelson and Adam Smith. Asp with applications to mazes and
levels. In Noor Shaker, Julian Togelius, and Mark J. Nelson, editors,
Procedural Content Generation in Games: A Textbook and an Overview of
Current Research. Springer, 2015.

[155] Allen Newell and Herbert A Simon. Computer science as Empirical
Inquiry: Symbols and Search. Communications of the ACM, 19(3):113–
126, 1976.

[156] Gerhard Nierhaus. Algorithmic Composition: Paradigms of Automated
Music Generation. Springer, 2009.

[157] Nintendo. Donkey Kong. [Arcade game], 1981.

[158] Nintendo. Super Mario Bros. [Digital game], 1985.

[159] Nintendo EAD. The Legend of Zelda: A Link to the Past. [Digital
game], 1991.

[160] Nintendo R&D4. The Legend of Zelda. [Digital game], 1986.

[161] M. Nitsche. Video Game Spaces: Image, Play, and Structure in 3D
Worlds. Game studies. MIT Press, Cambridge, MA, U.S.A., 2009. ISBN
9780262141017.

[162] Donald A. Norman. The Design of Everyday Things. Basic Books, New
York, U.S.A., 2002.

[163] Carl Magnus Olsson, Staffan Björk, and Steve Dahlskog. The concep-
tual relationship model: Understanding patterns and mechanics in
game design. In DiGRA 2014 Conference, 2014.

[164] C. Onuczko, M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton,
T. Roy, K. Waugh, M. Carbonaro, and J. Siegel. A Pattern Catalog
For Computer Role Playing Games. In Proceedings of GAMEON North
America, pages 33–38, 2005.

260 bibliography

[165] Ben Paechter, R.C. Rankin, Andrew Cumming, and Terence C. Foga-
rty. Timetabling the classes of an entire university with an evolution-
ary algorithm. In AgostonE. Eiben, Thomas Bäck, Marc Schoenauer,
and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature
— PPSN V, volume 1498 of Lecture Notes in Computer Science, pages
865–874. Springer Berlin Heidelberg, 1998. ISBN 978-3-540-65078-2.
doi: 10.1007/BFb0056928.

[166] Alex Pantaleev. In search of patterns: Disrupting rpg classes through
procedural content generation. In Proceedings of the 2012 Workshop on
Procedural Content Generation in Games, pages 57–61, May 2012.

[167] Alison Pease, Daniel Winterstein, and Simon Colton. Evaluating Ma-
chine Creativity. In Workshop on Creative Systems, 4th Internation Con-
ference on Case Based Reasoning, pages 129–137, 2001.

[168] C. Pedersen, J. Togelius, and G.N. Yannakakis. Modeling player ex-
perience in super mario bros. In Computational Intelligence and Games,
2009. CIG 2009. IEEE Symposium on, pages 132–139, Sept 2009. doi:
10.1109/CIG.2009.5286482.

[169] C. Pedersen, J. Togelius, and G.N. Yannakakis. Modeling player expe-
rience for content creation. IEEE Transactions on Computational Intelli-
gence and AI in Games, 2(1):54–67, March 2010. ISSN 1943-068X. doi:
10.1109/TCIAIG.2010.2043950.

[170] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chat-
terjee. A design science research methodology for information sys-
tems research. Journal of Management Information Systems, 24(3):45–77,
December 2007. ISSN 0742-1222. doi: 10.2753/MIS0742-1222240302.

[171] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):
287–296, July 1985. ISSN 0097-8930. doi: 10.1145/325165.325247.

[172] Markus Persson. Infinite Mario Bros. [Digital game], 2008.

[173] Rhianna Pratchett. GAMERS IN THE UK - digital play, digital
lifestyles., December 2005.

bibliography 261

[174] Mike Preuss, Antonios Liapis, and Julian Togelius. Searching for good
and diverse game levels. In Proceedings of the IEEE Conference on Com-
putational Intelligence and Games (CIG), 2014.

[175] Re-Logic. Terraria. [Digital game], 2011.

[176] Chris Reade. Elements of Functional Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989. ISBN 0-201-
12915-9.

[177] Ingo Rechenberg. Evolutionsstrategie, Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution. Frommann-Holzboog,
Stuttgart, 1973.

[178] Rockstar North. Grand Theft Auto V. [Digital game], 2013.

[179] David F. Rogers. Procedural Elements for Computer Graphics. McGraw-
Hill, Inc., New York, NY, USA, 1985. ISBN 0-07-053534-5.

[180] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition,
2009. ISBN 9780136042594.

[181] Katie Salen and Eric Zimmerman. Rules of Play. MIT Press, Cam-
bridge, MA, U.S.A., 2004.

[182] Adam Saltsman. Canabalt (PC game). [Digital game], 2009. URL
http://www.adamatomic.com/canabalt/.

[183] Schwefel, Hans-Paul. Evolution and Optimum Seeking. Wiley, 1995.

[184] Scorpia. Scorpia’s Role-Playing Game Survey. Computer Gaming
World, 87:16–27, 107–109, 1991.

[185] N. Shaker, G. N. Yannakakis, and J. Togelius. Feature analysis for
modeling game content quality. In 2011 IEEE Conference on Computa-
tional Intelligence and Games (CIG’11), pages 126–133, Aug 2011. doi:
10.1109/CIG.2011.6031998.

262 bibliography

[186] N. Shaker, M. Nicolau, G.N. Yannakakis, J. Togelius, and M. O’Neill.
Evolving Personalized Content for Super Mario Bros Using Gram-
matical Evolution. In IEEE Conference on Computational Intelligence
and Games, pages 304–311. IEEE, 2012. ISBN 978-1-4673-1193-9. doi:
10.1109/CIG.2012.6374170.

[187] N. Shaker, G.N. Yannakakis, and J. Togelius. Crowdsourcing the aes-
thetics of platform games. IEEE Transactions on Computational Intel-
ligence and AI in Games, 5(3):276–290, 2013. ISSN 1943-068X. doi:
10.1109/TCIAIG.2012.2231413.

[188] Noor Shaker. Towards Player-Driven Procedural Content Generation. PhD
thesis, ITU Copenhagen, 2013.

[189] Noor Shaker, Georgios Yannakakis, and Julian Togelius. Towards Au-
tomatic Personalized Content Generation for Platform Games. In
AAAI Conference on Artificial Intelligence and Interactive Digital Enter-
tainment. The AAAI Press, 2010.

[190] Noor Shaker, Julian Togelius, Georgios N. Yannakakis, Ben George
Weber, Tomoyuki Shimizu, Tomonori Hashiyama, Nathan Sorenson,
Philippe Pasquier, Peter A. Mawhorter, Glen Takahashi, Gillian Smith,
and Robin Baumgarten. The 2010 mario ai championship: Level ge-
neration track. IEEE Transactions on Computational Intelligence and AI
in Games, 3(4):332–347, 2011.

[191] Noor Shaker, Miguel Nicolau, Georgios N Yannakakis, Julian To-
gelius, and Michael O’Neill. Evolving levels for Super Mario Bros
using grammatical evolution. In Computational Intelligence and Games
(CIG), 2012 IEEE Conference on, pages 304–311. IEEE, 2012.

[192] Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and
Rafael Bidarra. Constructive generation methods for dungeons and
levels. In Noor Shaker, Julian Togelius, and Mark J. Nelson, editors,
Procedural Content Generation in Games: A Textbook and an Overview of
Current Research. Springer, 2015.

bibliography 263

[193] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research.
Springer, 2015.

[194] Claude E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27(3):379–423, 1948.

[195] Claude E. Shannon. Prediction and entropy of printed English. Bell
System Technical Journal, 30(1):50–64, 1951.

[196] Herbert A. Simon. The Sciences of the Artificial. MIT Press, Cambridge,
MA, U.S.A., 3rd ed. edition, 1996.

[197] Ruben Smelik, Tim Tutenel, Klaas Jan de Kraker, and Rafael Bidarra.
Integrating procedural generation and manual editing of virtual
worlds. In Proceedings of the 2010 Workshop on Procedural Content Ge-
neration in Games, PCGames ’10, pages 2:1–2:8, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0023-0. doi: 10.1145/1814256.1814258.

[198] Adam M. Smith and Michael Mateas. Computational caricatures:
Probing the game design process with AI. In Artificial Intelligence in
the Game Design Process, Papers from the 2011 AIIDE Workshop, Stanford,
California, USA, October 11, 2011, volume WS-11-19 of AAAI Workshops.
AAAI, 2011.

[199] Adam M. Smith and Michael Mateas. Answer Set Programming for
Procedural Content Generation: A Design Space Approach. IEEE
Transactions on Computational Intelligence and AI in Games, 3(3):187–200,
2011.

[200] Gillian Smith. Expressive Design Tools: Procedural Content Generation for
Game Design. PhD thesis, UC Santa Cruz, Santa Cruz, CA, June 2012.

[201] Gillian Smith. Understanding Procedural Content Generation: A
Design-centric Analysis of the Role of PCG in Games. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’14, pages 917–926, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2473-1. doi: 10.1145/2556288.2557341.

264 bibliography

[202] Gillian Smith and Jim Whitehead. Analyzing the Expressive Range
of a Level Generator. In Proceedings of the 2010 Workshop on Pro-
cedural Content Generation in Games, PCGames ’10, pages 4:1–4:7,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0023-0. doi:
10.1145/1814256.1814260.

[203] Gillian Smith, Mee Cha, and Jim Whitehead. A Framework for
Analysis of 2D Platformer Levels. In Sandbox ’08: Proceedings of
the 2008 ACM SIGGRAPH symposium on Video games, pages 75–80,
New York, NY, USA, 2008. ACM. ISBN 978-1-60558-173-6. doi:
10.1145/1401843.1401858.

[204] Gillian Smith, Mike Treanor, Jim Whitehead, and Michael Mateas.
Rhythm-based level generation for 2d platformers. In Proceedings of
the 4th International Conference on Foundations of Digital Games, FDG ’09,
pages 175–182, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
437-9. doi: 10.1145/1536513.1536548.

[205] Gillian Smith, Jim Whitehead, and Michael Mateas. Tanagra: A
mixed-initiative level design tool. In Proceedings of the Fifth Interna-
tional Conference on the Foundations of Digital Games, pages 209–216,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-937-4. doi:
10.1145/1822348.1822376.

[206] Gillian Smith, Ryan Anderson, Brian Kopleck, Zach Lindblad, Lauren
Scott, Adam Wardell, Jim Whitehead, and Michael Mateas. Situating
Quests: Design Patterns for Quest and Level Design in Role-Playing
Games. In Proceedings of the 4th international conference on Interactive
Digital Storytelling, ICIDS’11, pages 326–329, Berlin, Heidelberg, 2011.
Springer-Verlag. ISBN 978-3-642-25288-4.

[207] Gillian Smith, Ryan Anderson, Brian Kopleck, Zach Lindblad, Lauren
Scott, Adam Wardell, Jim Whitehead, and Michael Mateas. Situating
Quests: Design Patterns for Quest and Level Design in Role-Playing
Games. In Mei Si, David Thue, Elisabeth André, James C. Lester,
Joshua Tanenbaum, and Veronica Zammitto, editors, ICIDS, volume

bibliography 265

7069 of LNCS, pages 326–329, Berlin / Heidelberg, 2011. Springer.
ISBN 978-3-642-25288-4. doi: 10.1007/978-3-642-25289-1_40.

[208] Gillian Smith, Jim Whitehead, and Michael Mateas. Tanagra: Reactive
Planning and Constraint Solving for Mixed-Initiative Level Design.
IEEE Transactions on Computational Intelligence and AI in Games, 3(3):
201–215, 2011.

[209] Gillian Smith, Jim Whitehead, Michael Mateas, Mike Treanor, Jameka
March, and Mee Cha. Launchpad: A Rhythm-Based Level Generator
for 2-D Platformers. Computational Intelligence and AI in Games, IEEE
Transactions on, 3(1):1–16, 2011.

[210] Sam Snodgrass and Santiago Ontañón. Generating maps using
Markov chains. In Proceedings of the 2013 AIIDE Workshop on Artifi-
cial Intelligence and Game Aesthetics, pages 25–28, 2013.

[211] Sam Snodgrass and Santiago Ontañón. Experiments in map genera-
tion using markov chains. In Proceedings of the 9th International Confer-
ence on Foundations of Digital Games, FDG ’14, 2014.

[212] Sonic Team. Sonic the Hedgehog. [Digital game], 1991.

[213] Spectrum Strategy Consultants. From exuberant youth to sustainable
maturity - Competitiveness analysis of the UK games software sec-
tor. Consultant report, DTI - Department of Trade and Industry, U.K.,
2002.

[214] Francis Spufford. Backroom Boys – The Secret Return of the British Boffin.
Faber and Faber Limited, Croydon, U.K., 2003.

[215] Square. Final fantasy. [Digital game], 1987.

[216] Statista. Global PC and console games revenue in 2014

and 2019 (in billion U.S. dollars). [WWW], December 2015.
URL http://www.statista.com/statistics/237187/global-video-

games-revenue/.

266 bibliography

[217] Steve Russell et al. Spacewar! [Digital game], 1962.

[218] Subset Games. FTL: Faster Than Light. [Digital game], September
2012.

[219] The NetHack DevTeam. NetHack. [Digital game], 1987.

[220] Tommy Thompson. The Fine Line Between Rehash and Sequel: De-
sign Patterns of the Super Mario Series. In Proceedings of the Forth
Workshop on Design Patterns in Games, DPG ’15. FDG, 2015.

[221] J. Togelius and J. Schmidhuber. An Experiment in Automatic Game
Design. In Computational Intelligence and Games, 2008. CIG ’08. IEEE
Symposium On, pages 111–118, 2008. doi: 10.1109/CIG.2008.5035629.

[222] J. Togelius, R. De Nardi, and S.M. Lucas. Towards automatic person-
alised content creation for racing games. In Computational Intelligence
and Games, 2007. CIG 2007. IEEE Symposium on, pages 252–259, 2007.
doi: 10.1109/CIG.2007.368106.

[223] Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. The
2009 Mario AI Competition. In Proceedings of the IEEE Congress on
Evolutionary Computation, 2010.

[224] Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan
Hagelbäck, and Georgios N. Yannakakis. Multiobjective Exploration
of the StarCraft map space. In Georgios N. Yannakakis and Julian
Togelius, editors, Computational Intelligence and Games (CIG), 2010 IEEE
Symposium on, pages 265–272. IEEE, 2010. ISBN 978-1-4244-6295-7.

[225] Julian Togelius, Mike Preuss, and Georgios N. Yannakakis. Towards
multiobjective procedural map generation. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, PCGames ’10,
pages 3:1–3:8, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0023-0. doi: 10.1145/1814256.1814259.

[226] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. Search-based procedural content generation. In

bibliography 267

Proceedings of the 2010 International Conference on Applications of Evolu-
tionary Computation - Volume Part I, EvoApplicatons’10, pages 141–150,
Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-12238-8, 978-3-
642-12238-5. doi: 10.1007/978-3-642-12239-2_15.

[227] Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N. Yan-
nakakis. What is Procedural Content Generation?: Mario on the
borderline. In Proceedings of the 2nd International Workshop on Pro-
cedural Content Generation in Games, PCGames ’11, pages 3:1–3:6,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0872-4. doi:
10.1145/2000919.2000922.

[228] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational Intelli-
gence and AI in Games, 3(3):172–186, 2011. ISSN 1943-068X. doi:
10.1109/TCIAIG.2011.2148116.

[229] Julian Togelius, Alex J. Champandard, Pier Luca Lanzi, Michael
Mateas, Ana Paiva, Mike Preuss, and Kenneth O. Stanley. Proce-
dural content generation: Goals, challenges and actionable steps. In
Dagstuhl Seminar 12191: Artificial and Computational Intelligence in Ga-
mes. Dagstuhl, 2013.

[230] Julian Togelius, Noor Shaker, Sergey Karakovskiy, and Georgios N.
Yannakakis. The Mario AI Championship 2009-2012. AI Magazine, 34

(3):89–92, 2013.

[231] Julian Togelius, Noor Shaker, and Mark J. Nelson. Introduction. In
Noor Shaker, Julian Togelius, and Mark J. Nelson, editors, Procedu-
ral Content Generation in Games: A Textbook and an Overview of Current
Research. Springer, 2015.

[232] Michael Toy, Glenn Wichman, Ken Arnold, and Jon Lane. Rogue.
[Digital game], 1980.

268 bibliography

[233] Triumph Studios. Age of Wonders: Shadow Magic. [Digital game],
2003.

[234] A.M. Turing. Intelligent machinery. In D. C. Ince, editor, Collected
Works of A.M. Turing. Elsevier Science, 1992.

[235] Turtle Rock Studios. Left 4 Dead. [Digital game], 2008.

[236] Ubisoft Montreal. Far Cry 2. [Digital game], November 2008.

[237] Valtchan Valtchanov and Joseph Alexander Brown. Evolving Dun-
geon Crawler Levels with Relative Placement. In Proceedings of the
Fifth International C* Conference on Computer Science and Software En-
gineering, C3S2E ’12, pages 27–35, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1084-0. doi: 10.1145/2347583.2347587.

[238] Valve Corporation. Alien Swarm. [Digital game], 2010.

[239] R. van der Linden, R. Lopes, and R. Bidarra. Procedural gene-
ration of dungeons. IEEE Transactions on Computational Intelligence
and AI in Games, 6(1):78–89, March 2014. ISSN 1943-068X. doi:
10.1109/TCIAIG.2013.2290371.

[240] Ron Weber. Toward a theory of artifacts: a paradigmatic base for
information systems research. Journal of Information Systems, 1(2):3–
19, 1987.

[241] William Higinbotham. Tennis for Two. [Analog game], October 1958.

[242] World Machine Software, LLC. World Machine. [Software], 2011.

[243] Don Worth. Beneath apple manor. [Digital game], 1978.

[244] Georgios N Yannakakis and Héctor P Martínez. Ratings are overrated!
Frontiers in ICT, 2:13, 2015.

[245] Georgios N. Yannakakis, Antonios Liapis, and Constantine Alexopou-
los. Mixed-initiative co-creativity. In Proceedings of the 9th Conference
on the Foundations of Digital Games, 2014.

bibliography 269

[246] José P. Zagal, Michael Mateas, Clara Fernández-vara, Brian Hochhal-
ter, and Nolan Lichti. Towards an ontological language for game
analysis. In Proceedings of International DiGRA Conference, pages 3–14,
2005.

MALMÖ UNIVERSITY

205 06 MALMÖ, SWEDEN

WWW.MAH.SE

isbn 978-91-7104-684-0 (print)

isbn 978-91-7104-685-7 (pdf)

S
T

E
V

E
 D

A
H

L
S

K
O

G

 M
A

L
M

Ö
 U

N
IV

E
R

S
IT

Y
 2

0
1

6
P

A
T

T
E

R
N

S
 A

N
D

 P
R

O
C

E
D

U
R

A
L

 C
O

N
T

E
N

T
 G

E
N

E
R

A
T

IO
N

 IN
 D

IG
ITA

L
 G

A
M

E
S

	PATTERNS AND PROCEDURAL CONTENT GENERATION
	Dedication
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Comprehensive Summary
	1 Introduction
	2 Background
	2.1 Digital games and their industry
	2.2 Procedural Content Generation
	2.2.1 Game Content
	2.2.2 PCG Research

	2.3 Application Domains
	2.4 Related Research Fields
	2.5 Concepts
	2.5.1 Evolutionary Computation
	2.5.2 n-grams
	2.5.3 Design Patterns
	2.5.4 Game Design Patterns

	3 Research Focus
	3.1 Research Questions
	3.2 Research Limitations

	4 Methodology
	4.1 Methodological consideration and motivation
	4.2 The Design Science Research Framework
	4.2.1 Environment and Knowledge base
	4.2.2 Research output
	4.2.3 Research activities

	4.3 Research process
	4.3.1 Literature studies
	4.3.2 Evaluation

	5 Contributions
	6 Conclusions and future work

	Papers
	7 Paper 1 – Patterns and Procedural Content Generation
	7.1 Introduction
	7.1.1 Procedural content generation
	7.1.2 Structures, noise and meaning
	7.1.3 A little less randomization, a little more variation, please

	7.2 Design patterns
	7.2.1 Design patterns in games

	7.3 Combining PCG and design patterns
	7.4 A plumber in a strangely designed land
	7.5 Looking for Patterns in all the right places
	7.5.1 Examples of Super Mario Bros design patterns

	7.6 The plan for pattern-based Mario level generation
	7.7 Conclusion
	7.8 Acknowledgments

	8 Paper 2 – Patterns as Objectives for Level Generation
	8.1 Introduction
	8.2 Background
	8.2.1 Design patterns
	8.2.2 Game content and game development
	8.2.3 Fitting into the pattern
	8.2.4 Related work

	8.3 Mario
	8.3.1 The original representation

	8.4 Representation and genotype-to-phenotype mapping
	8.4.1 Vertical slices
	8.4.2 Putting pieces together

	8.5 Fitness function
	8.6 Evolutionary algorithm
	8.7 Examples of generated levels
	8.8 Evaluation
	8.9 Discussion
	8.10 Conclusion

	9 Paper 3 – PCG Using Patterns as Objectives
	9.1 Introduction
	9.1.1 Background
	9.1.2 Examples of patterns

	9.2 Rationale
	9.2.1 Representation
	9.2.2 Evolutionary algorithm
	9.2.3 Fitness function

	9.3 Results and evaluation
	9.3.1 Finding patterns

	9.4 Expressive range
	9.5 Discussion
	9.6 Conclusion
	9.7 Acknowledgments

	10 Paper 4 – A Multi-level Level Generator
	10.1 Introduction
	10.1.1 Contributions in this paper

	10.2 Background
	10.2.1 Procedural content generation in games
	10.2.2 Design Patterns
	10.2.3 Benchmark game

	10.3 Level Design Patterns in Mario
	10.3.1 Micro-patterns
	10.3.2 Meso-patterns
	10.3.3 Macro-patterns
	10.3.4 Multi-Level Level Generation

	10.4 Pattern-based level generation
	10.5 Automatic level analysis
	10.6 Methods
	10.6.1 Representation
	10.6.2 Evolutionary Algorithm
	10.6.3 Variation operators
	10.6.4 Fitness functions

	10.7 Results
	10.7.1 Efficiency
	10.7.2 Expressive Range

	10.8 Future work
	10.9 Conclusion

	11 Paper 5
	11.1 Introduction
	11.2 Related Work
	11.3 Experimental Testbed
	11.3.1 Generators
	11.3.2 Metrics

	11.4 Generator Comparison
	11.4.1 All Metrics
	11.4.2 Expressive Range Visualization
	11.4.3 Controllability

	11.5 Future Work
	11.6 Conclusions

	12 Paper 6 – Linear levels through n-grams
	12.1 Introduction
	12.2 Capturing platformer level style with n-grams
	12.2.1 N-gram style capture
	12.2.2 Effects in other domains
	12.2.3 Information content

	12.3 Methods
	12.4 Results
	12.4.1 Effects of varying n
	12.4.2 Effects of varying training data
	12.4.3 Expressive range

	12.5 Large scale comparison
	12.6 Discussion
	12.6.1 The importance of the representation
	12.6.2 Pruning the corpus
	12.6.3 Linearity in game levels

	12.7 Conclusion

	13 Paper 7 – Patterns, Dungeons and Generators
	13.1 Introduction
	13.2 Related work
	13.2.1 Game Spaces and Dungeons
	13.2.2 Design Patterns
	13.2.3 Procedural Content Generation
	13.2.4 Design Patterns used in PCG

	13.3 Classification of Dungeons
	13.4 Patterns
	13.4.1 Fundamental Components
	13.4.2 Micro-patterns
	13.4.3 Meso-patterns
	13.4.4 Macro-patterns

	13.5 Discussion and Conclusions

	14 Paper 8
	14.1 Introduction
	14.2 Background
	14.2.1 Related work
	14.2.2 Purpose

	14.3 Generators
	14.3.1 n-gram Generator
	14.3.2 Multi-level Level Generator
	14.3.3 Occupancy-Regulated Extension
	14.3.4 Notch
	14.3.5 Parameterized Notch

	14.4 Experiment set-up
	14.4.1 Users
	14.4.2 Equipment
	14.4.3 Levels
	14.4.4 Questionnaires

	14.5 Results and Analysis
	14.5.1 Entertaining
	14.5.2 Challenging
	14.5.3 Well made
	14.5.4 Mario-like
	14.5.5 Intra-generator comparisons

	14.6 Discussion
	14.7 Conclusion

	Bibliography

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 39.69 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1297
 620
 Fixed
 Down
 39.6850
 0.0000

 Both
 198
 AllDoc
 214

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 25
 290
 289
 290

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 14.17 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1297
 620
 Fixed
 Down
 14.1732
 0.0000

 Both
 198
 AllDoc
 214

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 37
 290
 289
 290

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 36.85 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1297
 620
 Fixed
 Right
 36.8504
 0.0000

 Odd
 198
 AllDoc
 214

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 28
 290
 288
 145

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move left by 11.34 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1297
 620
 Fixed
 Left
 11.3386
 0.0000

 Odd
 198
 AllDoc
 214

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 28
 290
 288
 145

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: none
 Shift: move left by 25.51 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1297
 620
 Fixed
 Left
 25.5118
 0.0000

 Even
 198
 AllDoc
 214

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 29
 290
 289
 145

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: none
 Shift: move left by 11.34 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1297
 620
 Fixed
 Left
 11.3386
 0.0000

 Even
 198
 AllDoc
 214

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 29
 290
 289
 145

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 11.34 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1297
 620
 Fixed
 Right
 11.3386
 0.0000

 Odd
 198
 AllDoc
 214

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 32
 290
 288
 145

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
 Add frames around each page: no
 Sheet size: 6.882 x 10.031 inches / 174.8 x 254.8 mm
 Sheet orientation: tall
 Layout: rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0001
 20.0001
 1
 Corners
 0.2999
 Fixed
 0
 0
 1
 1
 0.7750
 0
 0
 1
 0.0000
 0

 D:20160530161158
 722.2677
 160x240 med utfall
 Blank
 495.4961

 Tall
 1067
 235
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: before first page
 Number of pages: 2
 Page size: same as current

 Blanks
 Always
 2
 1
 2
 757
 262
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsCur
 AtStart

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after last page
 Number of pages: 2
 Page size: same as current

 Blanks
 Always
 2
 1
 2
 757
 262

 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsCur
 AtEnd

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0f
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

