Publikationer från Malmö universitet
Endre søk
Begrens søket
12 1 - 50 of 75
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Barriga, Hanna
    et al.
    Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm, Sweden.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Hall, Stephen
    Division of Solid Mechanics, Lund University, and Lund Institute of Advanced Neutron and X-ray Science, Lund, Sweden.
    Hellsing, Maja
    Division for Bioeconomy and Health, RISE Research Institutes of Sweden, Stockholm, Sweden.
    Karlsson, Maths
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Pavan, Adriano
    Department of Chemistry, Uppsala University, Uppsala, Sweden.
    Peng, Ru
    Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Strandqvist, Nanny
    Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    Wolff, Max
    Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    A Bibliometric Study on Swedish Neutron Users for the Period 2006–20202021Inngår i: Neutron News, ISSN 1044-8632, E-ISSN 1931-7352, Vol. 32, nr 4, s. 28-33Artikkel i tidsskrift (Fagfellevurdert)
    Fulltekst (pdf)
    fulltext
  • 2. Bertram, Nicolas
    et al.
    Barker, Robert
    Bavishi, Krutika
    Lindberg Møller, Birger
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Nanodisc films for membrane protein studies by neutron reflection: Effect of the protein scaffold choice2015Inngår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 31, nr 30, s. 8386-8391Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanodisc films are a promising approach to study the equilibrium conformation of membrane bound proteins in native-like environment. Here we compare nanodisc formation for NADPH-dependent cytochrome P450 oxidoreductase (POR) using two different scaffold proteins, MSP1D1 and MSP1E3D1. Despite the increased stability of POR loaded MSP1E3D1 based nanodiscs in comparison to MSP1D1 based nanodiscs, neutron reflection at the silicon–solution interface showed that POR loaded MSP1E3D1 based nanodisc films had poor surface coverage. This was the case, even when incubation was carried out under conditions that typically gave high coverage for empty nanodiscs. The low surface coverage affects the embedded POR coverage in the nanodisc film and limits the structural information that can be extracted from membrane bound proteins within them. Thus, nanodisc reconstitution on the smaller scaffold proteins is necessary for structural studies of membrane bound proteins in nanodisc films.

  • 3. Brennich, Martha
    et al.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces. European Synchrotron Radiation Facility, Experiments Division, 71 avenue des Martyrs, 38000 Grenoble, France.
    Castillo-Michel, Hiram
    European Synchrotron Radiation Facility, Experiments Division, 71 avenue des Martyrs, 38000 Grenoble, France.
    Cotte, Marine
    European Synchrotron Radiation Facility, Experiments Division, 71 avenue des Martyrs, 38000 Grenoble, France.
    Forsyth, V. Trevor
    Institit Laue Langevin, Life Sciences Group, 71 avenue des Martyrs, 38042 Grenoble, France; Keele University, Faculty of Natural Sciences, Keele, Staffordshire, ST5 5BG UK.
    Haertlein, Michael
    Institit Laue Langevin, Life Sciences Group, 71 avenue des Martyrs, 38042 Grenoble, France.
    Kimber, Simon A. J.
    European Synchrotron Radiation Facility, Experiments Division, 71 avenue des Martyrs, 38000 Grenoble, France.
    Le Duc, Geraldine
    European Synchrotron Radiation Facility, Experiments Division, 71 avenue des Martyrs, 38000 Grenoble, France.
    Mitchel, Edward P.
    European Synchrotron Radiation Facility, Experiments Division, 71 avenue des Martyrs, 38000 Grenoble, France; Keele University, Faculty of Natural Sciences, Keele, Staffordshire, ST5 5BG UK.
    Round, Adam
    Keele University, Faculty of Natural Sciences, Keele, Staffordshire, ST5 5BG UK; European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38000 Grenoble, France.
    Salome, Murielle
    European Synchrotron Radiation Facility, Experiments Division, 71 avenue des Martyrs, 38000 Grenoble, France.
    Sztucki, Michael
    European Synchrotron Radiation Facility, Experiments Division, 71 avenue des Martyrs, 38000 Grenoble, France.
    Nanoparticle Characterization Methods: Applications of Synchrotron and Neutron Radiation2016Inngår i: Pharmaceutical Nanotechnology: Innovation and Production / [ed] Jean Cornier Dr.; Prof. Andrew Owen; Prof. Arno Kwade Dr.; Prof. Marcel Van de Voorde, John Wiley & Sons, 2016, s. 157-174Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    The characterization of materials at the atomic-, nano-, and microscales is of crucial importance in understanding and then tailoring their macroscale properties and function for end-use applications and for effective modern cradle-to-reuse materials cycling. Synchrotron light, as well as the complementary neutron beams, offer exquisite microscopy probes to look into the heart of materials. This chapter presents some examples of pharma-oriented nanoparticle characterization highlighting the possibilities of synchrotron light and neutron beams. Small-angle X-ray scattering (SAXS) is a well-established technique to probe nanoscale structures. SAXS can also deliver valuable information on the structure of self-assembled nanovectors, such as liposomes, which are recognized as efficient platforms for drug delivery. Future developments for neutron characterization will be driven in parallel with instrumental developments at existing sources and future facilities such as the European Spallation Source (ESS) being built in Sweden.  

  • 4.
    Browning, Kathryn
    et al.
    Uppsala Univ, Dept Pharm, Uppsala, Sweden.
    Lind, Tania
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Maric, Selma
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Malekkhaiat-Haffner, Sara
    Uppsala Univ, Dept Pharm, Uppsala, Sweden.
    Fredrikson, Gunilla
    Lund Univ, Dept Clin Sci, Lund, Sweden.
    Bengtsson, Eva
    Lund Univ, Dept Clin Sci, Rochester, Sweden.
    Malmsten, Martin
    Univ Copenhagen, Dept Pharm, Copenhagen, Denmark; Uppsala Univ, Dept Pharm, Uppsala, Sweden.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Human lipoproteins at model cell membranes: Role of the lipoprotein class on lipid dynamics2017Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikkel i tidsskrift (Annet vitenskapelig)
  • 5.
    Browning, Kathryn Louise
    et al.
    Department of Pharmacy, Uppsala University, Uppsala, Sweden; Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
    Lind, Tania Kjellerup
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Maric, Selma
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Barker, Robert David
    Institut Laue-Langevin, Grenoble, France.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Malmsten, Martin
    Department of Pharmacy, Uppsala University, Uppsala, Sweden; Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
    Effect of bilayer charge on lipoprotein lipid exchange2018Inngår i: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 168, s. 117-125Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lipoproteins play a key role in the onset and development of atherosclerosis, the formation of lipid plaques at blood vessel walls. The plaque formation, as well as subsequent calcification, involves not only endothelial cells but also connective tissue, and is closely related to a wide range of cardiovascular syndromes, that together constitute the number one cause of death in the Western World. High (HDL) and low (LDL) density lipoproteins are of particular interest in relation to atherosclerosis, due to their protective and harmful effects, respectively. In an effort to elucidate the molecular mechanisms underlying this, and to identify factors determining lipid deposition and exchange at lipid membranes, we here employ neutron reflection (NR) and quartz crystal microbalance with dissipation (QCM-D) to study the effect of membrane charge on lipoprotein deposition and lipid exchange. Dimyristoylphosphatidylcholine (DMPC) bilayers containing varying amounts of negatively charged dimyristoylphosphatidylserine (DMPS) were used to vary membrane charge. It was found that the amount of hydrogenous material deposited from either HDL or LDL to the bilayer depends only weakly on membrane charge density. In contrast, increasing membrane charge resulted in an increase in the amount of lipids removed from the supported lipid bilayer, an effect particularly pronounced for LDL. The latter effects are in line with previously reported observations on atherosclerotic plaque prone regions of long-term hyperlipidaemia and type 2 diabetic patients, and may also provide some molecular clues into the relation between oxidative stress and atherosclerosis. (C) 2018 Elsevier B.V. All rights reserved.

  • 6.
    Browning, T. K.
    et al.
    Department of Pharmacy, Uppsala University, Uppsala, Sweden.
    Lind, Tania Kjellerup
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Maric, Selma
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Malekkhaiat-Häffner, S.
    Department of Pharmacy, Uppsala University, Uppsala, Sweden.
    Fredrikson, G. N.
    Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden.
    Bengtsson, E.
    Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden.
    Malmsten, M.
    Department of Pharmacy, Uppsala University, Uppsala, Sweden; Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Human lipoproteins at model cell membranes: Role of the lipoprotein class on lipid dynamics2017Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 7, artikkel-id 7478Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High and low density lipoproteins (HDL and LDL) are thought to play vital roles in the onset and development of atherosclerosis; the biggest killer in the western world. Key issues of initial lipoprotein (LP) interactions at cellular membranes need to be addressed including LP deposition and lipid exchange. Here we present a protocol for monitoring the in situ kinetics of lipoprotein deposition and lipid exchange/removal at model cellular membranes using the non-invasive, surface sensitive methods of neutron reflection and quartz crystal microbalance with dissipation. For neutron reflection, lipid exchange and lipid removal can be distinguished thanks to the combined use of hydrogenated and tail-deuterated lipids. Both HDL and LDL remove lipids from the bilayer and deposit hydrogenated material into the lipid bilayer, however, the extent of removal and exchange depends on LP type. These results support the notion of HDL acting as the ‘good’ cholesterol, removing lipid material from lipid-loaded cells, whereas LDL acts as the ‘bad’ cholesterol, depositing lipid material into the vascular wall.

    Fulltekst (pdf)
    FULLTEXT01
  • 7.
    Clifton, Luke A
    et al.
    ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, United Kingdom.
    Campbell, Richard A
    Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom.
    Sebastiani, Federica
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Campos-Terán, José
    Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico; Lund Institute of advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 Lund, Sweden.
    Gonzalez-Martinez, Juan F
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Björklund, Sebastian
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Sotres, Javier
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques.2020Inngår i: Advances in Colloid and Interface Science, ISSN 0001-8686, E-ISSN 1873-3727, Vol. 277, artikkel-id 102118Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellular membranes are complex structures and simplified analogues in the form of model membranes or biomembranes are used as platforms to understand fundamental properties of the membrane itself as well as interactions with various biomolecules such as drugs, peptides and proteins. Model membranes at the air-liquid and solid-liquid interfaces can be studied using a range of complementary surface-sensitive techniques to give a detailed picture of both the structure and physicochemical properties of the membrane and its resulting interactions. In this review, we will present the main planar model membranes used in the field to date with a focus on monolayers at the air-liquid interface, supported lipid bilayers at the solid-liquid interface and advanced membrane models such as tethered and floating membranes. We will then briefly present the principles as well as the main type of information on molecular interactions at model membranes accessible using a Langmuir trough, quartz crystal microbalance with dissipation monitoring, ellipsometry, atomic force microscopy, Brewster angle microscopy, Infrared spectroscopy, and neutron and X-ray reflectometry. A consistent example for following biomolecular interactions at model membranes is used across many of the techniques in terms of the well-studied antimicrobial peptide Melittin. The overall objective is to establish an understanding of the information accessible from each technique, their respective advantages and limitations, and their complementarity.

  • 8.
    Correa, Yubexi
    et al.
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Del Giudice, Rita
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Waldie, Sarah
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces. Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France.
    Thépaut, Michel
    Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France.
    Micciula, Samantha
    Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Large Scale Structures, Institut Laue Langevin (ILL), Grenoble F-38042, France.
    Gerelli, Yuri
    Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche 12, 60131 Ancona, Italy; CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, Rome, Italy.
    Moulin, Martine
    Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France.
    Delaunay, Clara
    Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France.
    Fieschi, Franck
    Partnership for Structural Biology, Grenoble F-38042, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France; Institut universitaire de France (IUF), Paris, France.
    Pichler, Harald
    Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria.
    Haertlein, Michael
    Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France.
    Forsyth, V Trevor
    Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France; Faculty of Medicine, Lund University, 22184 Lund, Sweden; LINXS Institute for Advanced Neutron and X-ray Science, Scheelevagen 19, 22370 Lund, Sweden.
    Le Brun, Anton
    National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
    Moir, Michael
    National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
    Russell, Robert A
    National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
    Darwish, Tamim
    National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
    Brinck, Jonas
    Karolinska Institute, Stockholm, Sweden.
    Wodaje, Tigist
    Karolinska Institute, Stockholm, Sweden.
    Jansen, Martin
    Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre, University of Freiburg, Freiburg Im Breisgau, Germany.
    Martín, César
    Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), 48940 Leioa, Spain.
    Roosen-Runge, Felix
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces. Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), 48940 Leioa, Spain; School of Biological Sciences, Nanyang Technological University, Singapore; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
    High-Density Lipoprotein function is modulated by the SARS-CoV-2 spike protein in a lipid-type dependent manner.2023Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 645, s. 627-638, artikkel-id S0021-9797(23)00736-1Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function. Based on neutron reflectometry (NR) and the ability of HDL to efflux cholesterol from macrophages, we confirm these observations and further identify the preference of the S protein for specific lipids and the consequent effects on HDL function on lipid exchange ability. Moreover, the effect of the S protein on HDL function differs depending on the individuals lipid serum profile. Contrasting trends were observed for individuals presenting low triglycerides/high cholesterol serum levels (LTHC) compared to high triglycerides/high cholesterol (HTHC) or low triglycerides/low cholesterol serum levels (LTLC). Collectively, these results suggest that the S protein interacts with the HDL particle and, depending on the lipid profile of the infected individual, it impairs its function during COVID-19 infection, causing an imbalance in lipid metabolism.

    Fulltekst (pdf)
    fulltext
  • 9.
    Correa, Yubexi
    et al.
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Jansen, M.
    Univ Med Ctr Freiburg, Inst Clin Chem & Lab Med, Freiburg, Germany..
    Blanchet, C.
    DESY, Embl, Hamburg, Germany..
    Roosen-Runge, Felix
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Pedersen, J. S.
    Aarhus Univ, Interdisciplinary Nanosci Ctr Inano, Aarhus, Denmark..
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Structural studies on LDL from patients with high and low lipoprotein (a)2022Inngår i: Atherosclerosis, ISSN 0021-9150, E-ISSN 1879-1484, Vol. 355, s. 56-56, artikkel-id EP164Artikkel i tidsskrift (Annet vitenskapelig)
  • 10.
    Correa, Yubexi
    et al.
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Ravel, Mathilde
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Imbert, Marie
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Waldie, Sarah
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Clifton, Luke
    Harwell Sci & Innovat Campus, Sci & Technol Facil Council, Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Source, Didcot, England..
    Terry, Ann
    Lund Univ, MAX Lab 4, CoSAXS Beamline, Lund, Sweden..
    Roosen-Runge, Felix
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Lagerstedt, Jens O.
    Lund Univ, Diabet Ctr, Dept Clin Sci Malmö, Islet Cell Exocytosis, Malmö, Sweden.;Novo Nordisk, Rare Endocrine Disorders, Res & Early Dev, Copenhagen, Denmark..
    Moir, Michael
    Australian Nucl Sci & Technol Org ANSTO, Natl Deuterat Facil, Lucas Heights, NSW, Australia..
    Darwish, Tamim
    Australian Nucl Sci & Technol Org ANSTO, Natl Deuterat Facil, Lucas Heights, NSW, Australia.;Univ Canberra, Fac Sci & Technol, Canberra, ACT, Australia..
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces. Basque Fdn Sci, Ikerbasque, Bilbao, Spain.;Univ Basque Country, Biofis Inst, Leioa, Spain..
    Del Giudice, Rita
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Lipid exchange of apolipoprotein A-I amyloidogenic variants in reconstituted high-density lipoprotein with artificial membranes2024Inngår i: Protein Science, ISSN 0961-8368, E-ISSN 1469-896X, Vol. 33, nr 5, artikkel-id e4987Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.

    Fulltekst (pdf)
    fulltext
  • 11.
    Correa, Yubexi
    et al.
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Waldie, Sarah
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces. Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France.
    Thépaut, Michel
    Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France.
    Micciula, Samantha
    Large Scale Structures, Institut Laue Langevin (ILL), Grenoble F-38042, France.
    Moulin, Martine
    Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France.
    Fieschi, Franck
    Partnership for Structural Biology, Grenoble F-38042, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France.
    Pichler, Harald
    Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria.
    Trevor Forsyth, V
    Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France; Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, UK.
    Haertlein, Michael
    Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    SARS-CoV-2 spike protein removes lipids from model membranes and interferes with the capacity of high density lipoprotein to exchange lipids2021Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 602, s. 732-739, artikkel-id S0021-9797(21)00930-9Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cholesterol has been shown to affect the extent of coronavirus binding and fusion to cellular membranes. The severity of Covid-19 infection is also known to be correlated with lipid disorders. Furthermore, the levels of both serum cholesterol and high-density lipoprotein (HDL) decrease with Covid-19 severity, with normal levels resuming once the infection has passed. Here we demonstrate that the SARS-CoV-2 spike (S) protein interferes with the function of lipoproteins, and that this is dependent on cholesterol. In particular, the ability of HDL to exchange lipids from model cellular membranes is altered when co-incubated with the spike protein. Additionally, the S protein removes lipids and cholesterol from model membranes. We propose that the S protein affects HDL function by removing lipids from it and remodelling its composition/structure.

    Fulltekst (pdf)
    fulltext
  • 12.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Univ Copenhagen, Dept Chem, Copenhagen, Denmark.
    Using neutron scattering in biology: The case for membrane proteins and lipoprotein particles2016Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikkel i tidsskrift (Annet vitenskapelig)
  • 13.
    Cárdenas, Marité
    et al.
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Arnebrant, Thomas
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Schillén, Karin
    Alfredsson, Viveka
    Duan, Rui-DOng
    Nyberg, Lena
    Solubilization of sphingomyelin vesicles by addition of a bile salt2008Inngår i: Chemistry and Physics of Lipids, ISSN 0009-3084, E-ISSN 1873-2941, Vol. 151, nr 1, s. 10-17Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The interactions of the bile salt sodium taurocholate (TC) in 50 mM Trizma–HCl buffer and 150 mM NaCl (pH 9) at 37 °C with membranes composed of sphingomyelin (SM) were studied by dynamic light scattering, cryogenic transmission electron microscopy (cryo-TEM) and turbidity measurements. Small unilamellar SM vesicles were prepared by extrusion. Below the CMC of TC, taurocholate addition leads to vesicle growth due to incorporation of the taurocholate molecules into the vesicle bilayer. At around half the CMC of the bile salt, the SM vesicles are transformed into SM/TC mixed worm-like micelles, which are visualized by cryo-TEM for the first time. Further increase in the taurocholate concentration leads to the rupture of these structures into small spherical micelles. Interestingly, large non-spherical micelles were also identified for pure taurocholate solutions. Similar threadlike structures have been reported earlier for the bile salt sodium taurodeoxycholate [Rich, A., Blow, D., 1958. Nature 182, 1777; Blow, D.M., Rich, A., 1960. J. Am. Chem. Soc. 82, 3566–3571; Galantini, L., Giglio, E., La Mesa, C., Viorel-Pavel, N., Punzo, F., 2002. Langmuir 18, 2812] and for mixtures of taurocholate and phosphatidylcholate [Ulmius, J., Lindblom, G., Wennerström, H., Johansson, L.B.-Å., Fontel, K., Söderman, O., Ardvisson, G., 1982. Biochemistry 21, 1553; Hjelm, R.P., Thiyagarajan, P., Alkan-Onyuksel, H., 1992. J. Phys. Chem. 96, 8653] as determined by various scattering methods.

  • 14.
    Cárdenas, Marité
    et al.
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Arnebrant, Thomas
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Thomas, Robert
    Fragnetto, Giovanna
    Rennie, Adrian
    Lindh, Liselott
    Malmö högskola, Odontologiska fakulteten (OD).
    Human Saliva Forms a Complex Film Structure on Alumina Surfaces2007Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 8, nr 1, s. 65-69Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Films formed from saliva on surfaces are important for maintenance of oral health and integrity by protection against chemical and/or biological agents. The aim of the present study was to investigate adsorbed amounts, thickness and the structure of films formed from human whole saliva on alumina surfaces by means of in situ ellipsometry, neutron reflectivity and atomic force microscopy. Alumina (Al2O3, synthetic sapphire) is a relevant and interesting substrate for saliva adsorption studies as it has an isoelectric point close to that of tooth enamel. The results showed that saliva adsorbs rapidly on alumina. The film could be modelled in two layers: an inner and dense thin region which forms a uniform layer, and an outer, more diffuse and thicker region that protrudes towards the bulk of the solution. The film morphology described a uniformly covering dense layer and a second outer layer containing polydisperse adsorbed macromolecules or aggregates.

    Fulltekst (pdf)
    FULLTEXT01
  • 15.
    Cárdenas, Marité
    et al.
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Barauskas, Justas
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Schillén, Karin
    Brennan, Jennifer
    Brust, Mattias
    Nylander, Tommy
    Thiol-Specific and Non-Specific Interactions Between DNA and Gold Nanoparticles2006Inngår i: Langmuir, Vol. 22, s. 3294-3299Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The contribution of nonspecific interactions to the overall interactions of thiol-ssDNA and dsDNA macromolecules with gold nanoparticles was investigated. A systematic investigation utilizing dynamic light scattering and cryogenic transmission electron microscopy has been performed to directly measure and visualize the changes in particle size and appearance during functionalization of gold nanoparticles with thiol-ssDNA and nonthiolated dsDNA. The results show that both thiol-ssDNA and dsDNA do stabilize gold nanoparticle dispersions, but possible nonspecific interactions between the hydrophobic DNA bases and the gold surface promote interparticle interactions and cause aggregation within rather a short period of time. We also discuss the adsorption mechanisms of dsDNA and thiol-ssDNA to gold particles.

  • 16.
    Cárdenas, Marité
    et al.
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces. Univ Basque Country & Consejo Super Invest Cient, Biofis Inst, UPV EHU CSIC, Leioa 48940, Spain.;Basque Fdn Sci, IKERBASQUE, Bilbao, Spain..
    Campbell, Richard A.
    Univ Manchester, Fac Biol Med & Hlth, Div Pharm & Optometry, Manchester M13 9PT, England..
    Arteta, Marianna Yanez
    AstraZeneca, Adv Drug Delivery Pharmaceut Sci, R&D, S-43183 Gothenburg, Sweden..
    Lawrence, M. Jayne
    Univ Manchester, Fac Biol Med & Hlth, Div Pharm & Optometry, Manchester M13 9PT, England..
    Sebastiani, Federica
    Politecn Milan, Dept Chem Mat & Chem Engn, I-20131 Milan, Italy.;Lund Univ, Dept Chem, Div Phys Chem, S-22100 Lund, Sweden..
    Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery2023Inngår i: Current Opinion in Colloid & Interface Science, ISSN 1359-0294, E-ISSN 1879-0399, Vol. 66, artikkel-id 101705Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Lipid nanoparticles (LNPs) are the most versatile and successful gene delivery systems, notably highlighted by their use in vaccines against COVID-19. LNPs have a well-defined core-shell structure, each region with its own distinctive compositions, suited for a wide range of in vivo delivery applications. Here, we discuss how a detailed knowledge of LNP structure can guide LNP formulation to improve the efficiency of delivery of their nucleic acid payload. Perspectives are detailed on how LNP structural design can guide more efficient nucleic acid transfection. Views on key physical characterization techniques needed for such developments are outlined including opinions on biophysical approaches both correlating structure with functionality in biological fluids and improving their ability to escape the endosome and deliver they payload.

    Fulltekst (pdf)
    fulltext
  • 17.
    Cárdenas, Marité
    et al.
    Malmö högskola, Fakulteten för hälsa och samhälle (HS). Malmö högskola, Odontologiska fakulteten (OD).
    Elofsson, Ulla
    Lindh, Liselott
    Malmö högskola, Fakulteten för hälsa och samhälle (HS). Malmö högskola, Odontologiska fakulteten (OD).
    Salivary mucin MUC5B could be an important component of in vitro pellicles of human saliva: an in situ ellipsometry and atomic force microscopy study2007Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 8, nr 4, s. 1149-1156Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper describes a combined investigation of the salivary and MUC5B films structure and topography in conditions similar to those found in the oral cavity in terms of ionic strength, pH, and protein concentration. AFM and ellipsometry were successfully used to give a detailed picture of the film structure and topography both on hydrophilic and on hydrophobic substrata. Regardless of the substrata, the salivary film can be described as having a two sublayer structure in which an inner dense layer is decorated by large aggregates. However, the shape and height of these larger aggregates largely depend on the type of substrata used. Additionally, we show that the adsorption of MUC5B is controlled by the type of substrata and the MUC5B film topography is similar to that of the larger aggregates present in the salivary films, especially on hydrophobic substrates. Therefore, we conclude that MUC5B is a major component in the salivary film when formed on hydrophobic substrates. Furthermore, we studied how resistant the salivary and MUC5B films are against elutability by buffer rinsing and addition of SDS solution. We conclude that the adsorbed proteins contain fractions with varying binding strengths to the two types of surfaces. Specifically, we have shown that the large MUC5B biomacromolecules on the hydrophobic substrates are especially resistant to both elution with buffer solution and SDS. Therefore, these large mucins can be responsible for the increased resistance of HWS films on hydrophobic substrates and can protect the intraoral surfaces against surface-active components present in oral health care products.

  • 18.
    Cárdenas, Marité
    et al.
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Svagan, Anna J.
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Cellulose Nanofibers for Biomedical Applications2016Inngår i: Biopolymers for Medical Applications / [ed] Juan M. Ruso, Paula V. Messina, CRC Press, 2016, s. 213-232Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    The creation of materials exploiting molecules from renewable resources and green processing routes in order to minimize contamination of the environment with toxic solvents and starting components, is an important step towards a sustainable society, and sustainable development is critical in all technological fields including biomedical engineering. In this context, the polysaccharides are an important family of molecules, as they can be derived from numerous natural sources including plants, bacteria, insects, animals, and also from by-products/waste-materials obtained from agricultural or fishery activities. Also, polysaccharides are biodegradable and can be broken down by common microorganisms found on land or in water. In nature, polysaccharides can be composed of one type of repeating unit (homopolysaccharides; starch and cellulose) or two or more types of repeating monomer (heteropolysaccharides; pectin, alginate). But despite using only a few basic building blocks, many unique and complex molecular structures with specific features and functions are assembled giving rise to a plethora of diverse carbohydrates. Some of the polysaccharides are classified as polyelectrolytes, and these are either negatively or positively charged. The intrinsic properties of such ionic polysaccharides are used in material science to produce stimuli-responsive materials where external stimuli (pH, ionic strength, and temperature) trigger, for example, a mechanical response in the material or a swelling mechanism that can be exploited in drug delivery. In addition to conventional polysaccharides, advanced genetic engineering also opens up the possibility for new, innovative, and structurally designed macromolecules with specific chemical and physical properties, allowing for better material structure-property control. Natural polysaccharides are typically biocompatible, possibly bioadhesive, and generally recognized as safe (GRAS) and, in conclusion, they are attractive materials to use in biomedical applications.

  • 19.
    Cárdenas, Marité
    et al.
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Valle-Delgado, Juan José
    Hamit, Jildiz
    Rutland, Mark
    Arnebrant, Thomas
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Interactions of Hydroxyapatite Surfaces: Conditioning Films of Human Whole Saliva2008Inngår i: Langmuir, Vol. 24, nr 14, s. 7262-7268Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.

  • 20.
    Del Giudice, Rita
    et al.
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Copenhagen, DK-1871, Denmark.
    Paracini, Nicolò
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Laursen, Tomas
    Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Denmark.
    Blanchet, Clement
    European Molecular Biology Laboratory (EMBL) Hamburg Outstation, DESY, 22607 Hamburg, Germany.
    Roosen-Runge, Felix
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces. Department of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore; Biofisika Institute (CSIC, UPV/EHU), Leioa, 48940, Spain.
    Expanding the Toolbox for Bicelle-Forming Surfactant–Lipid Mixtures2022Inngår i: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 27, nr 21, s. 7628-7628Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bicelles are disk-shaped models of cellular membranes used to study lipid–protein interactions, as well as for structural and functional studies on transmembrane proteins. One challenge for the incorporation of transmembrane proteins in bicelles is the limited range of detergent and lipid combinations available for the successful reconstitution of proteins in model membranes. This is important, as the function and stability of transmembrane proteins are very closely linked to the detergents used for their purification and to the lipids that the proteins are embedded in. Here, we expand the toolkit of lipid and detergent combinations that allow the formation of stable bicelles. We use a combination of dynamic light scattering, small-angle X-ray scattering and cryogenic electron microscopy to perform a systematic sample characterization, thus providing a set of conditions under which bicelles can be successfully formed.

    Fulltekst (pdf)
    fulltext
  • 21.
    Falco, Cigdem Yucel
    et al.
    University of Copenhagen, Department of Food Science, Copenhagen, Denmark.
    Amadei, Federico
    Heidelberg University, Institute for Physical Chemistry, Heidelberg, Germany.
    Dhayal, Surender K.
    Research & Development, Chr. Hansen A/S, Hoersholm, Denmark.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Tanaka, Motomu
    Heidelberg University, Institute for Physical Chemistry, Heidelberg, Germany.
    Risbo, Jens
    University of Copenhagen, Department of Food Science, Copenhagen, Denmark.
    Hybrid coating of alginate microbeads based on protein-biopolymer multilayers for encapsulation of probiotics2019Inngår i: Biotechnology progress (Print), ISSN 8756-7938, E-ISSN 1520-6033, Vol. 35, nr 3, artikkel-id UNSP e2806Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A hybrid coating based on multilayers of proteins and biopolymers was developed to enhance the protection performance of alginate microbeads against acidic conditions for delivery of probiotics (Lactobacillus rhamnosus GG). Zeta potential measurements and quartz crystal microbalance with dissipation confirmed layer-by-layer deposition of protein-polymer layers. The stability of protein-based coatings during simulated gastric fluid (SGF) treatment was monitored by microscopy. Protein-coated microbeads were partially dismantled, whereas polymer-coated microbeads were intact after a sequential treatment in simulated gastric and intestinal fluids. This suggests that hybrid formulation offers an advantage over the coatings based on biopolymer multilayers in terms of better release of bacteria. Uncoated alginate microbeads completely dissolved and could not protect bacteria after SGF treatment whereas microbeads with hybrid coating showed increased physical stability and a modest decrease of culturability of 3.8 log units. Therefore, this work provides a concept for future protein-based hybrid coatings for bacterial delivery systems.

  • 22.
    Falco, Cigdem Yucel
    et al.
    University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Copenhagen, Denmark.
    Falkman, Peter
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Risbo, Jens
    University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Copenhagen, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Medronho, Bruno
    University of Algarve, Faculty of Sciences and Technology (MeditBio), Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal.
    Chitosan-Dextran Sulfate Hydrogels as a Potential Carrier for Probiotics2017Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 172, s. 175-183Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Physical and chemical (crosslinked with genipin) hydrogels based on chitosan and dextran sulfate were developed and characterized as novel bio-materials suitable for probiotic encapsulation. The swelling of the hydrogels was dependent on the composition and weakly influenced by the pH of the media. The morphology analysis supports the swelling data showing distinct changes in microstructure depending on the composition. The viability and culturability tests showed approx. 3.6 log CFU/mL decrease of cells (L. acidophilus as model) incorporated into chemical hydrogels when compared to the number of viable native cells. However, the live/dead viability assay evidenced that a considerable amount of viable cells were still entrapped in the hydrogel network and therefore the viability is most likely underestimated. Overall, the developed systems are robust and their structure, rheology and swelling properties can be tuned by changing the blend ratio, thus constituting appealing bio-matrices for cell encapsulation.

  • 23.
    Falco, Cigdem Yucel
    et al.
    University of Copenhagen, Department of Food Science, Rolighedsvej 30, Copenhagen, DK-1958, Denmark.
    Geng, Xiaolu
    University of Copenhagen, Department of Food Science, Rolighedsvej 30, Copenhagen, DK-1958, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Risbo, Jens
    University of Copenhagen, Department of Food Science, Rolighedsvej 30, Copenhagen, DK-1958, Denmark.
    Edible Foam Based on Pickering Effect of Probiotic Bacteria and Milk Proteins2017Inngår i: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 70, s. 211-218Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report the preparation and characterization of aqueous Pickering foams using bio-particles constituted by lactic acid bacteria surface modified by oppositely charged milk proteins. Cell surface modification was shown by zeta potential measurements. Foams stabilized by bacterial Pickering bio-particles showed improved stability compared to purely milk protein stabilized foams. The stability of foams increased with the bacterial concentration whereas the foam volume (foamability) decreased. On the other hand, protein concentration was correlated with foamability but not with the foam stability. Optical and fluorescence microscopy revealed organized cell structures around and in between the air bubbles providing for an internal network that effectively stabilizes the foam. Therefore, entirely food grade stable foams can be produced by using modified health promoting bacterial cells and surface active milk proteins. Such Pickering systems can potentially be utilized in bottom up construction of more complex hierarchical food structures and further improve properties such as foam stability.

  • 24.
    Falco, Cigdem Yucel
    et al.
    University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Frederiksberg, Copenhagen, Denmark.
    Sotres, Javier
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Rascon, Ana
    Lund University, Food for Health Science Centre, 22100 Lund, Sweden.
    Risbo, Jens
    University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Frederiksberg, Copenhagen, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces. University of Copenhagen, Department of Chemistry, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
    Design of a potentially prebiotic and responsive encapsulation material for probiotic bacteria based on chitosan and sulfated beta-glucan2017Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 487, s. 97-106Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hypothesis: Chitosan and sulfated oat beta-glucan are materials suitable to create a prebiotic coating for targeted delivery to gastrointestinal system, using the layer by layer technology. Experiment: Quartz crystal microbalance with dissipation (QCM-D), spectroscopic ellipsometry (SE) and atomic force microscopy (AFM) were used to assess the multilayer formation capacity and characterize the resulting coatings in terms of morphology and material properties such as structure and rigidity. The coating of colloidal materials was proven, specifically on L acidophilus bacteria as measured by changes in the bacterial suspension zeta potential. Viability of coated cells was shown using plate counting method. The coatings on solid surfaces were examined after exposure to mimics of gastrointestinal fluids and a commercially available beta-glucanase. Findings: Successful build-up of multilayers was confirmed with QCM-D and SE. Zeta potential values proved the coating of cells. There was 2 log CFU/mL decrease after coating cells with four alternating layers of chitosan and sulfated p-glucan when compared to viability of uncoated cells. The coatings were partially degraded after exposure to simulated intestinal fluid and restructured as a result of beta-glucanase treatment, mimicking enzymes present in the microflora of the human gut, but seemed to resist acidic gastric conditions. Therefore, coatings of chitosan and sulfated beta-glucan can potentially be exploited as carriers for probiotics and delicate nutraceuticals. (C) 2016 Elsevier Inc. All rights reserved.

  • 25.
    Hedegaard, Sofie
    et al.
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen O, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces. Department of Chemistry, Faculty of Science, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen O, Denmark.
    Barker, Robert
    Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, Cedex 9, France.
    Jorgensen, Lene
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen O, Denmark.
    Van de Weert, Marco
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen O, Denmark.
    Lipidation Effect on Surface Adsorption and Associated Fibrillation of the Model Protein Insulin2016Inngår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, nr 28, s. 7241-7249Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lipidation of proteins is used in the pharma- ceutical field to increase the therapeutic efficacy of proteins. In this study, we investigate the effect of a 14-carbon fatty acid modification on the adsorption behavior of human insulin to a hydrophobic solid surface and the subsequent fibrillation development under highly acidic conditions and elevated temperature by comparing to the fibrillation of human insulin. At these stressed conditions, the lipid modification accelerates the rate of fibrillation in bulk solution. With the use of several complementary surface-sensitive techniques, including quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and neutron reflectivity (NR), we show that there are two levels of structurally different protein organization at a hydrophobic surface for both human insulin and the lipidated analogue: a dense protein layer formed within minutes on the surface and a diffuse outer layer of fibrillar structures which took hours to form. The two layers may only be weakly connected, and proteins from both layers are able to desorb from the surface. The lipid modification increases the protein surface coverage and the thickness of both layer organizations. Upon lipidation not only the fibrillation extent but also the morphology of the fibrillar structures changes from fibril clusters on the surface to a more homogeneous network of fibrils covering the entire hydrophobic surface.

  • 26.
    Hedegaard, Sofie Fogh
    et al.
    Centerfor Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
    Bruhn, Dennis Skjøth
    PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense SØ, Denmark.
    Khandelia, Himanshu
    PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense SØ, Denmark.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Nielsen, Hanne Mørck
    Centerfor Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
    Shuffled lipidation pattern and degree of lipidation determines the membrane interaction behavior of a linear cationic membrane-active peptide.2020Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 578, s. 584-597, artikkel-id S0021-9797(20)30740-2Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    HYPOTHESIS: Permeation of macromolecular drugs across biological plasma membranes is a major challenge in drug delivery. Cationic cell-penetrating peptides (CPPs) are attractive functional excipient candidates for the delivery of macromolecules across membrane barriers, due to their membrane translocating ability. The properties of CPPs can be tailored by lipidation, a promising approach to facilitate enhanced membrane insertion, potentially promoting increased translocation of the CPP and cargo.

    EXPERIMENTS: To explore the impact that site and degree of lipidation have on the membrane interaction of a cationic CPP, we designed and investigated CPP conjugates with one or two fatty acid chains.

    FINDINGS: Compared to the parent CPP and the single-lipidated conjugates, the double-lipidated conjugate exhibited the most pronounced membrane perturbation effects, as measured by several biophysical techniques. The experimental findings were supported by molecular dynamics (MD) simulations, demonstrating that all CPP conjugates interacted with the membrane by insertion of the lipid chain(s) into the core of the bilayer. Moreover, membrane-thinning effects and induced membrane curvature were displayed upon CPP interaction. Our results demonstrate that the impact exerted by the CPP on the membrane is notably affected by positioning and especially the degree of lipidation, which might influence the properties of CPPs as functional excipients.

  • 27.
    Hedegaard, Sofie Fogh
    et al.
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
    Derbas, Mohammed Sobhi
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
    Lind, Tania Kjellerup
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Kasimova, Marina Robertnova
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark; Symphogen A/S, Pederstrupvej 93, 2750, Ballerup, Denmark.
    Christensen, Malene Vinther
    Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark.
    Michaelsen, Maria Hotoft
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
    Campbell, Richard A.
    Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, 38042, Grenoble, France.
    Jorgensen, Lene
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
    Franzyk, Henrik
    Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Nielsen, Hanne Morck
    Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
    Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction2018Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 8, nr 1, artikkel-id 6327Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The demand for highly efficient macromolecular drugs, used in the treatment of many severe diseases, is continuously increasing. However, the hydrophilic character and large molecular size of these drugs significantly limit their ability to permeate across cellular membranes and thus impede the drugs in reaching their target sites in the body. Cell-penetrating peptides (CPP) have gained attention as promising drug excipients, since they can facilitate drug permeation across cell membranes constituting a major biological barrier. Fluorophores are frequently covalently conjugated to CPPs to improve detection, however, the ensuing change in physico-chemical properties of the CPPs may alter their biological properties. With complementary biophysical techniques, we show that the mode of biomembrane interaction may change considerably upon labeling of the CPP penetratin (PEN) with a fluorophore. Fluorophore-PEN conjugates display altered modes of membrane interaction with increased insertion into the core of model cell membranes thereby exerting membrane-thinning effects. This is in contrast to PEN, which localizes along the head groups of the lipid bilayer, without affecting the thickness of the lipid tails. Particularly high membrane disturbance is observed for the two most hydrophobic PEN conjugates; rhodamine B or 1-pyrene butyric acid, as compared to the four other tested fluorophore-PEN conjugates.

    Fulltekst (pdf)
    FULLTEXT01
  • 28.
    Hendus-Altenburger, Ruth
    et al.
    Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark; Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
    Vogensen, Jens
    Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
    Pedersen, Emilie Skotte
    Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
    Luchini, Alessandra
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark.
    Araya-Secchi, Raul
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark.
    Bendsoe, Anne H
    Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark; Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
    Prasad, Nanditha Shyam
    Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
    Prestel, Andreas
    Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
    Cardenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Pedraz-Cuesta, Elena
    Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
    Arleth, Lise
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark.
    Pedersen, Stine F
    Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
    Kragelund, Birthe B
    Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
    The intracellular lipid-binding domain of human Na+/H+ exchanger 1 forms a lipid-protein co-structure essential for activity2020Inngår i: Communications Biology, E-ISSN 2399-3642, Vol. 3, nr 1, artikkel-id 731Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dynamic interactions of proteins with lipid membranes are essential regulatory events in biology, but remain rudimentarily understood and particularly overlooked in membrane proteins. The ubiquitously expressed membrane protein Na+/H+-exchanger 1 (NHE1) regulates intracellular pH (pHi) with dysregulation linked to e.g. cancer and cardiovascular diseases. NHE1 has a long, regulatory cytosolic domain carrying a membrane-proximal region described as a lipid-interacting domain (LID), yet, the LID structure and underlying molecular mechanisms are unknown. Here we decompose these, combining structural and biophysical methods, molecular dynamics simulations, cellular biotinylation- and immunofluorescence analysis and exchanger activity assays. We find that the NHE1-LID is intrinsically disordered and, in presence of membrane mimetics, forms a helical αα-hairpin co-structure with the membrane, anchoring the regulatory domain vis-a-vis the transport domain. This co-structure is fundamental for NHE1 activity, as its disintegration reduced steady-state pHi and the rate of pHi recovery after acid loading. We propose that regulatory lipid-protein co-structures may play equally important roles in other membrane proteins.

    Fulltekst (pdf)
    fulltext
  • 29.
    Isaksson, Simon
    et al.
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-41296 Gothenburg, Sweden.
    Watkins, Erik B.
    Materials Physics and Application Division, MPA-11, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States.
    Browning, Kathryn L.
    Department of Pharmacy, Uppsala University , SE-75123 Uppsala, Sweden.
    Lind, Tania Kjellerup
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Hedfalk, Kristina
    Department of Chemistry and Molecular Biology, University of Gothenburg , SE-40530 Gothenburg, Sweden.
    Höök, Fredrik
    Department of Applied Physics, Chalmers University of Technology , SE-41296 Gothenburg, Sweden.
    Andersson, Martin
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-41296 Gothenburg, Sweden.
    Protein containing lipid bilayers intercalated with size-matched mesoporous silica thin films2017Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 1, s. 476-485Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein–material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film to match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic–inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.

  • 30.
    Jagalski, Vivien
    et al.
    Nano Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
    Barker, Robert
    Institute Laue Langevin, 71 avenue de Matyrs, CS, 20156, 38042 Grenoble Cedex 9, France.
    Topgaard, Daniel
    Division of Physical Chemistry, Department of Chemistry, Lund University, Sweden.
    Gunther-Pomorski, Thomas
    Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
    Hamberger, Björn
    Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces. Nano Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
    Biophysical study of resin acid effects on phospholipid membrane structure and properties2016Inngår i: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1858, nr 11, s. 2827-2838Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules, and there are no clear correlations to the molecular mechanisms behind the RA's toxicity. In this study we unravel the molecular interactions of the three closely related RAs dehydroabietic acid, neoabietic acid, and the synthetic analogue dichlorodehydroabietic acid with dipalmitoylphosphatidylcholine (DPPC) model membranes and the polar lipid extract of soybeans. The complementarity of the biophysical techniques used (NMR, DLS, NR, DSC, Cryo-TEM) allowed correlating changes at the vesicle level with changes at the molecular level and the co-localization of RAs within DPPC monolayer. Effects on DPPC membranes are correlated with the physical chemical properties of the RA and their toxicity.

  • 31.
    Jakubauskas, Dainius
    et al.
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Jansen, Martin
    Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany.
    Lyngsø, Jeppe
    Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
    Cheng, Yuanji
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för materialvetenskap och tillämpad matematik (MTM).
    Skov Pedersen, Jan
    Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Toward reliable low-density lipoprotein ultrastructure prediction in clinical conditions: A small-angle X-ray scattering study on individuals with normal and high triglyceride serum levels2021Inngår i: Nanomedicine: Nanotechnology, Biology and Medicine, ISSN 1549-9634, E-ISSN 1549-9642, Vol. 31, s. 1-13, artikkel-id 102318Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Atherosclerosis is the main killer in the west and therefore a major health challenge today. Total serum cholesterol and lipoprotein concentrations, used as clinical markers, fail to predict the majority of cases, especially between the risk scale extremes, due to the high complexity in lipoprotein structure and composition. In particular, low-density lipoprotein (LDL) plays a key role in atherosclerosis development, with LDL size being a parameter considered for determining the risk for cardiovascular diseases. Determining LDL size and structural parameters is challenging to address experimentally under physiological-like conditions. This article describes the biochemistry and ultrastructure of normolipidemic and hypertriglyceridemic LDL fractions and subfractions using small-angle X-ray scattering. Our results conclude that LDL particles of hypertriglyceridemic compared to healthy individuals 1) have lower LDL core melting temperature, 2) have lower cholesteryl ester ordering in their core, 3) are smaller, rounder and more spherical below melting temperature, and 4) their protein-containing shell is thinner above melting temperature.

    Fulltekst (pdf)
    fulltext
  • 32.
    Joon, Narender Kumar
    et al.
    Johan Gadolin Process Chemistry Centre, Laboratory of Analytical Chemistry, Åbo Akademi University, Biskopsgatan 8, 20500 Åbo-Turku, Finland.
    He, Ning
    Johan Gadolin Process Chemistry Centre, Laboratory of Analytical Chemistry, Åbo Akademi University, Biskopsgatan 8, 20500 Åbo-Turku, Finland.
    Wagner, Michal
    Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Bobacka, Johan
    Johan Gadolin Process Chemistry Centre, Laboratory of Analytical Chemistry, Åbo Akademi University, Biskopsgatan 8, 20500 Åbo-Turku, Finland.
    Lisak, Grzegorz
    Johan Gadolin Process Chemistry Centre, Laboratory of Analytical Chemistry, Åbo Akademi University, Biskopsgatan 8, 20500 Åbo-Turku, Finland; College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, CleanTech, Singapore 637141, Singapore.
    Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode2017Inngår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 252, s. 490-497Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, the influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb2+-selective electrode (Pb2+-ISE) was studied. The effects of bovine serum albumin (BSA) adsorption at the surface of the ion-selective membrane combined with electrode conditioning in phosphate-buffered saline (PBS) solution was elucidated by potentiometry and electrochemical impedance spectroscopy. The adsorbed BSA at the surface of the Pb2+-ISE slightly lowered the detection limit but did not influence the selectivity of the Pb2+-ISE towards the interfering ions studied (Cu2+, Cd2+). Conditioning of the Pb2+-ISE in 0.01 mol dm–3 PBS resulted in a super-Nernstian response which was related to fixation/extraction of Pb2+ in the ion-selective membrane via precipitation of Pb3(PO4)2 by PO43– anions present in PBS. By conditioning of the Pb2+-ISE in 0.01 mol dm–3 PBS + 1 mg/ml BSA it was possible to extend the linear response range of the Pb2+-ISE towards lower analyte concentrations. The utilization of this conditioning procedure was validated by determination of Pb2+ concentrations down to ca 20 ppb in aqueous samples by Pb2+-ISEs and by comparing the results with those obtained by ICP-MS.

  • 33.
    Kalimuthu, Palraj
    et al.
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Gonzalez-Martinez, Juan F
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Jakubauskas, Dainius
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Ruzgas, Tautgirdas
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Sotres, Javier
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Battery-free radio frequency wireless sensor for bacteria based on their degradation of gelatin-fatty acid composite films2021Inngår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 381, artikkel-id 138275Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Continuous and automated bacteria detection is pivotal for a myriad of biomedical, food safety and envi-ronmental applications. This work presents the fabrication of a prototype of a passive (battery-free) radio frequency sensor for wireless detection of bacteria. The sensing mechanism is based on the bacterial-induced (proteases and peptidases) degradation of glutaraldehyde (GTA) cross-linked gelatin-caprylic acid (CA) composite film. Proteolytic degradation of the film resulted in a decrease of its resistivity, a quan-tity that could be wirelessly monitored by coupling the film to a radio-frequency antenna (an inductor-capacitor resonator) and monitoring the frequency for which the transferred power between this antenna and another antenna connected to a Vector Network Analyzer (VNA) was maximized. We experimen-tally proved this concept by monitoring E.coli bacteria in aqueous medium and detected at 18.0 +/- 2.8 h, 23.5 +/- 0.7 h, 27.0 +/- 2.8 h, 40.5 +/- 3.5 h, 45.5 +/- 0.7 h for the initial E.coli concentration of 3.2 +/- 10(8) , 6.8 +/- 10(7) , 2.3 +/- 10(6) , 4.3 +/- 10(5) , and 3.6 +/- 10(4) CFU/mL, respectively. Further, the E.coli induced degrada-tion of the composite film was investigated by evaluating the thickness of the film by optical microscopy as well as morphology by scanning electron microscopy techniques. (C) 2021 Published by Elsevier Ltd.

    Fulltekst (pdf)
    fulltext
  • 34. Kapp, Sebastian
    et al.
    Larsson, Iben
    van de Weert, Marco
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Jørgensen, Lene
    Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces2015Inngår i: Journal of Pharmaceutical Sciences, ISSN 0022-3549, E-ISSN 1520-6017, Vol. 104, nr 2, s. 593-601Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two monoclonal antibodies from the IgG subclasses one and two were compared in their adsorption behavior with hydrophobic surfaces upon dilution to 10 mg/mL with 0.9% NaCl. These conditions simulate handling of the compounds at hospital pharmacies and surfaces encountered after preparation, such as infusion bags and i.v. lines. Total internal reflection fluorescence and quartz crystal microbalance with dissipation monitoring were used to follow and quantify this. Furthermore, the influence of the nonionic surfactant polysorbate 80 (PS80) on the adsorption process of these two antibodies was investigated. Despite belonging to two different IgG subclasses, both antibodies displayed comparable adsorption behavior. Both antibodies readily adsorbed in the absence of PS80, whereas adsorption was reduced in the presence of 30 mg/L surfactant. The sequence of exposure of the surfactant and protein to the surface was found to have a major influence on the extent of protein adsorption. Although only a fraction of adsorbed protein could be removed by rinsing with 30 mg/L surfactant solution, adsorption was entirely prevented when surfaces were pre-exposed to PS80

  • 35.
    Lind, Tania K
    et al.
    Nano-Science Center and Department of Chemistry, Copenhagen University, Copenhagen, Malmö, 20506, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces. Nano-Science Center and Department of Chemistry, Copenhagen University, Copenhagen, Malmö, 20506, Denmark.
    Understanding the formation of supported lipid bilayers via vesicle fusion: a case that exemplifies the need for the complementary method approach2016Inngår i: Biointerphases, ISSN 1934-8630, E-ISSN 1559-4106, Vol. 11, artikkel-id 020801Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In this review, the authors discuss the challenges of studying supported lipid bilayers (SLBs) deposited by vesicle fusion in terms of (1) evaluating SLB formation and quality using quartz crystal microbalance with dissipation and (2) analyzing the composition and asymmetry of SLBs composed by lipid mixtures using complementary surface sensitive techniques. An overview of the literature is presented and the inconsistencies on this topic are discussed with the objective to expand beyond simple lipid compositions and set the basis for forming and analyzing SLBs of complex natural lipid extracts formed via the vesicle fusion method. The authors conclude by providing some guidelines to successfully form SLBs of complex lipid mixtures including natural extracts.

    Fulltekst (pdf)
    FULLTEXT01
  • 36. Lind, Tania K
    et al.
    Polcyn, Piotr
    Zielinska, Paulina
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Urbanczyk-Lipkowska, Zofia
    On the Antimicrobial Activity of Various Peptide-Based Dendrimers of Similar Architecture2015Inngår i: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 20, nr 1, s. 738-753Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Antimicrobial drug resistance is a major human health threat. Among the many attempts to tackle this problem, the synthesis of antimicrobial compounds that mimic natural antimicrobial peptides appears as a promising approach. Peptide-based dendrimers can be designed to have higher potency than natural antimicrobial peptides and at the same time they can evade the bacterial defense system. Novel dendrimers with similar chemical structure but varying potency in terms of minimum inhibitory concentration were designed. The dependency between dendrimer structure and antibacterial activity as well as their capacity to attack model cell membranes was studied. The data suggests that supramolecular structure in terms of charge distribution and amphiphilicity, rather than net charge, is the main driver for disruption of cellular membranes and this correlates well with dendrimer hemolytic activity.

    Fulltekst (pdf)
    FULLTEXT01
  • 37. Lind, Tania Kjellerup
    et al.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Wacklin, Hanna
    Formation of supported lipid bilayers by vesicle fusion: effect of deposition temperature2014Inngår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 30, nr 25, s. 7259-7263Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tm by neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.

    Fulltekst (pdf)
    FULLTEXT01
  • 38.
    Lind, Tania Kjellerup
    et al.
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Skoda, Maximilian W. A.
    Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0QX, United Kingdom.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Formation and Characterization of Supported Lipid Bilayers Composed of Phosphatidylethanolamine and Phosphatidylglycerol by Vesicle Fusion, a Simple but Relevant Model for Bacterial Membranes2019Inngår i: ACS Omega, E-ISSN 2470-1343, Vol. 4, nr 6, s. 10687-10694Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Supported lipid bilayers (SLBs) are simple and robust biomimics with controlled lipid composition that are widely used as models of both mammalian and bacterial membranes. However, the lipids typically used for SLB formation poorly resemble those of bacterial cell membranes due to the lack of available protocols to form SLBs using mixtures of lipids relevant for bacteria such as phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). Although a few reports have been published recently on the formation of SLBs from Escherichia coli lipid extracts, a detailed understanding of these systems is challenging due to the complexity of the lipid composition in such natural extracts. Here, we present for the first time a simple and reliable protocol optimized to form high-quality SLBs using mixtures of PE and PG at compositions relevant for Gram-negative membranes. We show using neutron reflection and quartz microbalance not only that Ca2+ ions and temperature are key parameters for successful bilayer deposition but also that mass transfer to the surface is a limiting factor. Continuous flow of the lipid suspension is thus crucial for obtaining full SLB coverage. We furthermore characterize the resulting bilayers and report structural parameters, for the first time for PE and PG mixtures, which are in good agreement with those reported earlier for pure POPE vesicles. With this protocol in place, more suitable and reproducible studies can be conducted to understand biomolecular processes occurring at cell membranes, for example, for testing specificities and to unravel the mechanism of interaction of antimicrobial peptides.

  • 39. Lind, Tania Kjellerup
    et al.
    Wacklin, Hanna
    Schiller, Jürgen
    Moulin, Martine
    Haertlein, Michael
    Günther Pomorski, Thomas
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Formation and Characterization of Supported Lipid Bilayers Composed of Hydrogenated and Deuterated Escherichia coli Lipids2015Inngår i: PLOS ONE, E-ISSN 1932-6203, Vol. 10, nr 12, s. 10687-10694, artikkel-id e0144671Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Supported lipid bilayers are widely used for sensing and deciphering biomolecular interactions with model cell membranes. In this paper, we present a method to form supported lipid bilayers from total lipid extracts of Escherichia coli by vesicle fusion. We show the validity of this method for different types of extracts including those from deuterated biomass using a combination of complementary surface sensitive techniques; quartz crystal microbalance, neutron reflection and atomic force microscopy. We find that the head group composition of the deuterated and the hydrogenated lipid extracts is similar (approximately 75% phosphatidylethanolamine, 13% phosphatidylglycerol and 12% cardiolipin) and that both samples can be used to reconstitute high-coverage supported lipid bilayers with a total thickness of 41 ± 3 Å, common for fluid membranes. The formation of supported lipid bilayers composed of natural extracts of Escherichia coli allow for following biomolecular interactions, thus advancing the field towards bacterial-specific membrane biomimics.

    Fulltekst (pdf)
    FULLTEXT01
  • 40. Lind, TK
    et al.
    Darré, L
    Domene, C
    Urbanczyk-Lipkowska, Z
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.
    Wacklin, HP
    Antimicrobial peptide dendrimer interacts with phosphocholine membranes in a fluidity dependent manner: A neutron reflection study combined with molecular dynamics simulations2015Inngår i: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1848, nr 10, s. 2075-2084Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The interaction mechanism of a novel amphiphilic antimicrobial peptide dendrimer, BALY, with model lipid bilayers was explored through a combination of neutron reflection and molecular dynamics simulations. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phos-phocholine (DPPC) lipid bilayers were examined at room temperature to extract information on the interaction of BALY with fluid and gel phases, respectively. Furthermore, a 1:4 mixture of POPC and DPPC was used as a model of a phase-separated membrane. Upon interaction with fluid membranes, BALY inserted in the distal leaflet and caused thinning and disordering of the headgroups. Membrane thinning and expansion of the lipid cross-sectional area were observed for gel phase membranes, also with limited insertion to the distal leaflet. However, dendrimer insertion through the entire lipid tail region was observed upon crossing the lipid phase transition temperature of DPPC and in phase separated membranes. The results show clear differences in the interaction mechanism of the dendrimer depending on the lipid membrane fluidity, and suggest a role for lipid phase separation in promoting its antimicrobial activity.

  • 41.
    Lindh, Liselott
    et al.
    Malmö högskola, Odontologiska fakulteten (OD).
    Cardenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Human saliva film structure2007Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Films formed from saliva on surfaces are important for maintenance of oral health and integrity by serving as barriers against chemical and/or biological agents. OBJECTIVES: The aim of the present study was to investigate the structure of films formed from human whole saliva onto alumina surfaces. METHODS: In situ ellipsometry was used to investigate adsorbed amounts and thickness of the adsorbed layers. Neutron reflectivity and atomic force microscopy (AFM) were used to study the density profile within the adsorbed layer and morphology, respectively, of the adsorbed salivary film onto alumina (Al2O3). RESULTS: The results show that saliva adsorbed rapidly on alumina. First a thin and dense layer covered the surfaces. With time, a thicker and diffuser layer was developed. The film morphology described a uniformly covering dense layer and a second outer layer containing polydisperse adsorbed macromolecules or aggregates. CONCLUSION: The film was found to be composed of two layers: an inner and dense thin region, that forms a uniform layer, and an outer, more diffuse and thicker region that protrudes towards the bulk of the solution. This study was supported by research grants from the Knowledge Foundation, Malmö University, The Swedish Dental Society, The Swedish Patent Revenue Fund for Research in Preventive Dentistry, The Swedish Research Council and Uppsala University. We are grateful also to the Institute Laue Langevin, Grenoble for an allocation of neutron beam time.

  • 42.
    Lindh, Liselott
    et al.
    Malmö högskola, Odontologiska fakulteten (OD).
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Arnebrant, Thomas
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Fragneto, G
    Thomas, RK
    Rennie, A
    Salivfilmers struktur på ytor2006Konferansepaper (Annet vitenskapelig)
  • 43.
    Lindh, Liselott
    et al.
    Malmö högskola, Odontologiska fakulteten (OD).
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Arnebrant, Thomas
    Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Rennie, A
    Salivary films studied by means of neutron reflection2007Konferansepaper (Annet (populærvitenskap, debatt, mm))
  • 44.
    Lindh, Liselott
    et al.
    Malmö högskola, Odontologiska fakulteten (OD). Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Svendsen, Ida
    Malmö högskola, Odontologiska fakulteten (OD). Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Svensson, Olof
    Cárdenas, Marité
    Malmö högskola, Odontologiska fakulteten (OD). Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    Arnebrant, Thomas
    Malmö högskola, Odontologiska fakulteten (OD). Malmö högskola, Fakulteten för hälsa och samhälle (HS).
    The salivary mucin MUC5B and lactoperoxidase can be used for layer-by-layer film formation2007Inngår i: Journal of Colloid Interface Science, Vol. 310, nr 1, s. 74-82Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Abstract In situ ellipsometry was used to study layer-by-layer film formation on hydrophilic and hydrophobized silica surfaces by alternating sequential adsorption of human mucin MUC5B and cationic proteins lysozyme, lactoferrin, lactoperoxidase or histatin 5, respectively. The stability of the multilayers was investigated by addition of sodium dodecyl sulfate solution (SDS). Atomic force microscopy was employed to investigate morphological structures on the surfaces during the layer-by-layer film build-up. It was clearly shown that, on both hydrophilic and hydrophobized silica, only MUC5B and lactoperoxidase showed the ability for multilayer formation, resulting in an approximately linear increase in adsorbed amount and film thickness with each deposition cycle. The net increase in amounts per cycle was larger on the hydrophilic silica. Further, MUC5B needs to be adsorbed first on the hydrophilic substrates to obtain this fast build-up behavior. Generally, addition of SDS solution showed that a large fraction of the adsorbed film could be desorbed. However, films on the hydrophobized silica were more resistant to surfactant elution. In conclusion, MUC5B–cationic protein multilayers can be formed on hydrophilic and hydrophobized silica, depending on the choice of the cationic protein as well as in which order the build-up is started on hydrophilic silica. Additionally, SDS disrupts the layer-by-layer film formed by MUC5B and lactoperoxidase.

  • 45.
    Luchini, Alessandra
    et al.
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
    Nzulumike, Achebe N O
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
    Lind, Tania Kjellerup
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Nano-Science Center and Institute of Chemistry, Copenhagen University, Universitetsparken 5, 2100, Copenhagen, Denmark.
    Nylander, Tommy
    Physical Chemistry 1, Lund University, PO Box 124, 221 00, Lund, Sweden.
    Barker, Robert
    Institut Laue-Langevin, 71 Avenue des Martyrs, 38000, Grenoble, France.
    Arleth, Lise
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
    Mortensen, Kell
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Towards biomimics of cell membranes: Structural effect of phosphatidylinositol triphosphate (PIP3) on a lipid bilayer2019Inngår i: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 173, s. 202-209Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Phosphoinositide (PIP) lipids are anionic phospholipids playing a fundamental role for the activity of several transmembrane and soluble proteins. Among all, phosphoinositol-3',4',5'-trisphosphate (PIP3) is a secondary signaling messenger that regulates the function of proteins involved in cell growth and gene transcription. The present study aims to reveal the structure of PIP-containing lipid membranes, which so far has been little explored. For this purpose, supported lipid bilayers (SLBs) containing 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-3',4',5'-trisphosphate (DOPIP3) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were used as mimics of biomembranes. Surface sensitive techniques, i.e. Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), Atomic Force Microscopy (AFM) and Neutron Reflectometry (NR), provided detailed information on the formation of the SLB and the location of DOPIP3 in the lipid membrane. Specifically, QCM-D and AFM were used to identify the best condition for lipid deposition and to estimate the total bilayer thickness. On the other hand, NR was used to collect experimental structural data on the DOPIP3 location and orientation within the lipid membrane. The two bilayer leaflets showed the same DOPIP3 concentration, thus suggesting the formation of a symmetric bilayer. The headgroup layer thicknesses of the pure POPC and the mixed POPC/DOPIP3 bilayer suggest that the DOPIP3-headgroups have a preferred orientation, which is not perpendicular to the membrane surface, but instead it is close to the surrounding lipid headgroups. These results support the proposed PIP3 tendency to interact with the other lipid headgroups as PC, so far exclusively suggested by MD simulations.

  • 46.
    Luchini, Alessandra
    et al.
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
    Sebastiani, Federica
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Tidemand, Frederik Grønbæk
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
    Batchu, Krishna Chaithanya
    Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
    Campana, Mario
    ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, United Kingdom.
    Fragneto, Giovanna
    Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Arleth, Lise
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
    Peptide discs as precursors of biologically relevant supported lipid bilayers2021Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 585, s. 376-385, artikkel-id S0021-9797(20)31605-2Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Supported lipid bilayers (SLBs) are commonly used to investigate the structure and dynamics of biological membranes. Vesicle fusion is a widely exploited method to produce SLBs. However, this process becomes less favoured when the vesicles contain complex lipid mixtures, e.g. natural lipid extracts. In these cases, it is often necessary to change experimental parameters, such as temperature, to unphysiological values to trigger the SLB formation. This may induce lipid degradation and is also not compatible with including membrane proteins or other biomolecules into the bilayers. Here, we show that the peptide discs, ~10 nm discoidal lipid bilayers stabilized in solution by a self-assembled 18A peptide belt, can be used as precursors for SLBs. The characterizations by means of neutron reflectometry and attenuated total reflectance-FTIR spectroscopy show that SLBs were successfully formed both from synthetic lipid mixtures (surface coverage 90-95%) and from natural lipid mixtures (surface coverage ~85%). Traces of 18A peptide (below 0.02 M ratio) left at the support surface after the bilayer formation do not affect the SLB structure. Altogether, we demonstrate that peptide disc formation of SLBs is much faster than the SLB formation by vesicle fusion and without the need of altering any experimental variable from physiologically relevant values.

  • 47.
    Luchini, Alessandra
    et al.
    Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark.
    Tidemand, Frederik Gronbaek
    Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark.
    Johansen, Nicolai Tidemand
    Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark.
    Campana, Mario
    ISIS-STFC , Rutherford Appleton Laboratory , Chilton , Oxon OX11 0QX , United Kingdom.
    Sotres, Javier
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Ploug, Michael
    Biotech Research and Innovation Center , University of Copenhagen , Ole Maaløes Vej 5 , 2200 Copenhagen , Denmark; Finsen Laboratory , Rigshospitalet , Ole Maaløes Vej 5 , 2200 Copenhagen , Denmark.
    Cárdenas, Marité
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Arleth, Lise
    Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark.
    Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations2020Inngår i: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 92, nr 1, s. 1081-1088Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In vitro characterization of membrane proteins requires experimental approaches providing mimics of the microenvironment that proteins encounter in native membranes. In this context, supported lipid bilayers provide a suitable platform to investigate membrane proteins by a broad range of surface-sensitive techniques such as neutron reflectometry (NR), quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR), atomic force microscopy (AFM), and fluorescence microscopy. Nevertheless, the successful incorporation of membrane proteins in lipid bilayers with sufficiently high concentration and controlled orientation relative to the bilayer remains challenging. We propose the unconventional use of peptide discs made by phospholipids and amphipathic 18A peptides to mediate the formation of supported phospholipid bilayers with two different types of membrane proteins, CorA and tissue factor (TF). The membrane proteins are reconstituted in peptide discs, deposited on a solid surface, and the peptide molecules are then removed with extensive buffer washes. This leaves a lipid bilayer with a relatively high density of membrane proteins on the support surface. As a very important feature, the strategy allows membrane proteins with one large extramembrane domain to be oriented in the bilayer, thus mimicking the in vivo situation. The method is highly versatile, and we show its general applicability by characterizing with the above-mentioned surface-sensitive techniques two different membrane proteins, which were efficiently loaded in the supported bilayers with similar to 0.6% mol/mol (protein/lipid) concentration corresponding to 35% v/v for CorA and 8% v/v for TF. Altogether, the peptide disc mediated formation of supported lipid bilayers with membrane proteins represents an attractive strategy for producing samples for structural and functional investigations of membrane proteins and for preparation of suitable platforms for drug testing or biosensor development.

  • 48.
    Luchini, Alessandra
    et al.
    European Spallat Source ERIC, Partikelgatan, S-22484 Lund, Sweden.;Univ Perugia, Dept Phys & Geol, I-06123 Perugia, Italy..
    Tidemand, Frederik Gronbaek
    Univ Copenhagen, Dept Plant & Environm Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark..
    Johansen, Nicolai Tidemand
    Univ Copenhagen, Dept Plant & Environm Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark..
    Sebastiani, Federica
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Corucci, Giacomo
    Inst Laue Langevin, 71 Ave Martyrs,BP 156, F-38042 Grenoble, France.;Univ Grenoble Alpes, Ecole Doctorale Phys, 110 Rue Chim, F-38400 St Martin Dheres, France..
    Fragneto, Giovanna
    Inst Laue Langevin, 71 Ave Martyrs,BP 156, F-38042 Grenoble, France.;Univ Grenoble Alpes, Ecole Doctorale Phys, 110 Rue Chim, F-38400 St Martin Dheres, France..
    Cárdenas, Marité
    Malmö universitet, Biofilms Research Center for Biointerfaces. Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Arleth, Lise
    Univ Copenhagen, Niels Bohr Inst, Univ Parken 5, DK-2100 Copenhagen, Denmark..
    Dark peptide discs for the investigation of membrane proteins in supported lipid bilayers: the case of synaptobrevin 2 (VAMP2)2022Inngår i: Nanoscale Advances, E-ISSN 2516-0230, Vol. 10, nr 17Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Supported lipid bilayers (SLBs) are commonly used as model systems mimicking biological membranes. Recently, we reported a new method to produce SLBs with incorporated membrane proteins, which is based on the application of peptide discs [Luchini et al., Analytical Chemistry, 2020, 92, 1081-1088]. Peptide discs are small discoidal particles composed of a lipid core and an outer belt of self-assembled 18A peptides. SLBs including membrane proteins can be formed by depositing the peptide discs on a solid support and subsequently removing the peptide by buffer rinsing. Here, we introduce a new variant of the 18A peptide, named dark peptide (d18A). d18A exhibits UV absorption at 214 nm, whereas the absorption at 280 nm is negligible. This improves sample preparation as it enables a direct quantification of the membrane protein concentration in the peptide discs by measuring UV absorption at 280 nm. We describe the application of the peptide discs prepared with d18A (dark peptide discs) to produce SLBs with a membrane protein, synaptobrevin 2 (VAMP2). The collected data showed the successful formation of SLBs with high surface coverage and incorporation of VAMP2 in a single orientation with the extramembrane domain exposed towards the bulk solvent. Compared to 18A, we found that d18A was more efficiently removed from the SLB. Our data confirmed the structural organisation of VAMP2 as including both alpha-helical and beta-sheet secondary structure. We further verified the orientation of VAMP2 in the SLBs by characterising the binding of VAMP2 with alpha-synuclein. These results point at the produced SLBs as relevant membrane models for biophysical studies as well as nanostructured biomaterials.

    Fulltekst (pdf)
    fulltext
  • 49.
    Luchini, Alessandra
    et al.
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
    Tidemand, Frederik Grønbæk
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
    Araya-Secchi, Raul
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
    Campana, Mario
    ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, United Kingdom.
    Cárdenas, Marité
    Malmö universitet, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Malmö universitet, Biofilms Research Center for Biointerfaces.
    Arleth, Lise
    Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
    Structural model of tissue factor (TF) and TF-factor VIIa complex in a lipid membrane: A combined experimental and computational study2022Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 623, s. 294-305, artikkel-id S0021-9797(22)00724-XArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tissue factor (TF) is a membrane protein involved in blood coagulation. TF initiates a cascade of proteolytic reactions, ultimately leading to the formation of a blood clot. The first reaction consists of the binding of the coagulation factor VII and its conversion to the activated form, FVIIa. Here, we combined experimental, i.e. quartz crystal microbalance with dissipation monitoring and neutron reflectometry, and computational, i.e. molecular dynamics (MD) simulation, methods to derive a complete structural model of TF and TF/FVIIa complex in a lipid bilayer. This model shows that the TF transmembrane domain (TMD), and the flexible linker connecting the TMD to the extracellular domain (ECD), define the location of the ECD on the membrane surface. The average orientation of the ECD relative to the bilayer surface is slightly tilted towards the lipid headgroups, a conformation that we suggest is promoted by phosphatidylserine lipids, and favours the binding of FVIIa. On the other hand, the formation of the TF/FVIIa complex induces minor changes in the TF structure, and reduces the conformational freedom of both TF and FVIIA. Altogether we describe the protein-protein and protein-lipid interactions favouring blood coagulation, but also instrumental to the development of new drugs.

  • 50.
    Maric, Selma
    et al.
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV).
    Lind, Tania
    Univ Copenhagen, Nanosci Ctr, Copenhagen, Denmark.
    Cárdenas, Marité
    Malmö högskola, Fakulteten för hälsa och samhälle (HS), Institutionen för biomedicinsk vetenskap (BMV). Univ Copenhagen, Copenhagen, Denmark.
    Lipoprotein structure dependency on its lipid cargo and exchange dynamics: Implications for atherosclerosis development2016Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikkel i tidsskrift (Annet vitenskapelig)
12 1 - 50 of 75
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf