Malmö University Publications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Sergeeva, Yulia
    et al.
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Yeung, Sing Yee
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Sellergren, Börje
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Heteromultivalent Ligand Display on Reversible Self-Assembled Monolayers (rSAMs): A Fluidic Platform for Tunable Influenza Virus Recognition2024In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 16, no 3, p. 3139-3146Article in journal (Refereed)
    Abstract [en]

    We report on the design of heteromultivalent influenza A virus (IAV) receptors based on reversible self-assembled monolayers (SAMs) featuring two distinct mobile ligands. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with sialic acid (SA) and the neuraminidase inhibitor Zanamivir (Zan), acting as two mobile ligands binding to the complementary receptors hemagglutinin (HA) and neuraminidase (NA) on the virus surface. From ternary amphiphile mixtures comprising these ligands, the amidines spontaneously self-assemble on top of carboxylic acid-terminated SAMs to form reversible mixed monolayers (rSAMs) that are easily tunable with respect to the ligand ratio. We show that this results in the ability to construct surfaces featuring a very strong affinity for the surface proteins and specific virus subtypes. Hence, an rSAM prepared from solutions containing 15% SA and 10% Zan showed an exceptionally high affinity and selectivity for the avian IAV H7N9 (Kd = 11 fM) that strongly exceeded the affinity for other subtypes (H3N2, H5N1, H1N1). Changing the SA/Zan ratio resulted in changes in the relative preference between the four tested subtypes, suggesting this to be a key parameter for rapid adjustments of both virus affinity and selectivity.

    Download full text (pdf)
    fulltext
  • 2.
    Yeung, Sing Yee
    et al.
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Sergeeva, Yulia
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Pan, Guoqing
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces. Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212 013, China.
    Mittler, Silvia
    Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 3K7.
    Ederth, Thomas
    Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
    Dam, Tommy
    Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden.
    Jönsson, Peter
    Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden.
    El-Schich, Zahra
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Gjörloff Wingren, Anette
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Tillo, Adam
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Hsiung Mattisson, Sabrina
    ImaGene-iT AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden.
    Holmqvist, Bo
    ImaGene-iT AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden.
    Stollenwerk, Maria M
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Sellergren, Börje
    Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
    Reversible Self-Assembled Monolayers with Tunable Surface Dynamics for Controlling Cell Adhesion Behavior.2022In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 14, no 37, p. 41790-41799Article in journal (Refereed)
    Abstract [en]

    Cells adhering onto surfaces sense and respond to chemical and physical surface features. The control over cell adhesion behavior influences cell migration, proliferation, and differentiation, which are important considerations in biomaterial design for cell culture, tissue engineering, and regenerative medicine. Here, we report on a supramolecular-based approach to prepare reversible self-assembled monolayers (rSAMs) with tunable lateral mobility and dynamic control over surface composition to regulate cell adhesion behavior. These layers were prepared by incubating oxoacid-terminated thiol SAMs on gold in a pH 8 HEPES buffer solution containing different mole fractions of ω-(ethylene glycol)2-4- and ω-(GRGDS)-, α-benzamidino bolaamphiphiles. Cell shape and morphology were influenced by the strength of the interactions between the amidine-functionalized amphiphiles and the oxoacid of the underlying SAMs. Dynamic control over surface composition, achieved by the addition of inert filler amphiphiles to the RGD-functionalized rSAMs, reversed the cell adhesion process. In summary, rSAMs featuring mobile bioactive ligands offer unique capabilities to influence and control cell adhesion behavior, suggesting a broad use in biomaterial design, tissue engineering, and regenerative medicine.

    Download full text (pdf)
    fulltext
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf