Publikationer från Malmö universitet
Ändra sökning
Avgränsa sökresultatet
1234567 1 - 10 av 289
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Saleem, Hajira
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Malekian, Reza
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Munir, Hussan
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Neural Network-Based Recent Research Developments in SLAM for Autonomous Ground Vehicles: A Review2023Ingår i: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 23, nr 13, s. 13829-13858Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The development of autonomous vehicles has prompted an interest in exploring various techniques in navigation. One such technique is simultaneous localization and mapping (SLAM), which enables a vehicle to comprehend its surroundings, build a map of the environment in real time, and locate itself within that map. Although traditional techniques have been used to perform SLAM for a long time, recent advancements have seen the incorporation of neural network techniques into various stages of the SLAM pipeline. This review article provides a focused analysis of the recent developments in neural network techniques for SLAM-based localization of autonomous ground vehicles. In contrast to the previous review studies that covered general navigation and SLAM techniques, this paper specifically addresses the unique challenges and opportunities presented by the integration of neural networks in this context. Existing review studies have highlighted the limitations of conventional visual SLAM, and this article aims to explore the potential of deep learning methods. This article discusses the functions required for localization, and several neural network-based techniques proposed by researchers to carry out such functions. First, it presents a general background of the issue, the relevant review studies that have already been done, and the adopted methodology in this review. Then, it provides a thorough review of the findings regarding localization and odometry. Finally, it presents our analysis of the findings, open research questions in the field, and a conclusion. A semisystematic approach is used to carry out the review.

  • 2.
    Dytckov, Sergei
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Persson, Jan A.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Integrate, not compete! On Potential Integration of Demand Responsive Transport Into Public Transport Network2023Konferensbidrag (Refereegranskat)
    Abstract [en]

    On-demand transport services are often envisioned as stand-alone modes or as a replacement for conventional public transport modes. This leads to a comparison of service efficiencies, or direct competition for passengers between them. The results of this work point to the positive effects of the inclusion of DRT into the public transport network. We simulate a day of operation of a DRT service in a rural area and demonstrate that a DRT system that focuses on increasing accessibility for travellers with poor public transport access can be quite efficient, especially for reducing environmental impact. We show that DRT, while it produces more vehicle kilometres than private cars would inside the DRT operating zone, can help to reduce the vehicle kilometres travelled for long-distance trips. The results of this study indicate the need for a more systemic evaluation of the impact of the new mobility modes.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Dytckov, Sergei
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Modelling and Simulating Demand-Responsive Transport2023Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
  • 4.
    Engström, Jimmy
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Sony Europe BV, S-22362 Lund, Sweden..
    Jevinger, Åse
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Persson, Jan A.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Some Design Considerations in Passive Indoor Positioning Systems2023Ingår i: Sensors, E-ISSN 1424-8220, Vol. 23, nr 12, artikel-id 5684Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    User location is becoming an increasingly common and important feature for a wide range of services. Smartphone owners increasingly use location-based services, as service providers add context-enhanced functionality such as car-driving routes, COVID-19 tracking, crowdedness indicators, and suggestions for nearby points of interest. However, positioning a user indoors is still problematic due to the fading of the radio signal caused by multipath and shadowing, where both have complex dependencies on the indoor environment. Location fingerprinting is a common positioning method where Radio Signal Strength (RSS) measurements are compared to a reference database of previously stored RSS values. Due to the size of the reference databases, these are often stored in the cloud. However, server-side positioning computations make preserving the user's privacy problematic. Given the assumption that a user does not want to communicate his/her location, we pose the question of whether a passive system with client-side computations can substitute fingerprinting-based systems, which commonly use active communication with a server. We compared two passive indoor location systems based on multilateration and sensor fusion using an Unscented Kalman Filter (UKF) with fingerprinting and show how these may provide accurate indoor positioning without compromising the user's privacy in a busy office environment.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Khoshkangini, Reza
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Halmstad Univ, Ctr Appl Intelligent Syst Res CAISR, S-30118 Halmstad, Sweden..
    Tajgardan, Mohsen
    Qom Univ Technol, Fac Elect & Comp Engn, Qom 151937195, Iran..
    Lundström, Jens
    Halmstad Univ, Ctr Appl Intelligent Syst Res CAISR, S-30118 Halmstad, Sweden..
    Rabbani, Mahdi
    Univ New Brunswick UNB, Canadian Inst Cybersecur CIC, Fredericton, NB E3B 9W4, Canada..
    Tegnered, Daniel
    Volvo Grp Connected Solut, S-41756 Gothenburg, Sweden..
    A Snapshot-Stacked Ensemble and Optimization Approach for Vehicle Breakdown Prediction2023Ingår i: Sensors, E-ISSN 1424-8220, Vol. 23, nr 12, artikel-id 5621Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Predicting breakdowns is becoming one of the main goals for vehicle manufacturers so as to better allocate resources, and to reduce costs and safety issues. At the core of the utilization of vehicle sensors is the fact that early detection of anomalies facilitates the prediction of potential breakdown issues, which, if otherwise undetected, could lead to breakdowns and warranty claims. However, the making of such predictions is too complex a challenge to solve using simple predictive models. The strength of heuristic optimization techniques in solving np-hard problems, and the recent success of ensemble approaches to various modeling problems, motivated us to investigate a hybrid optimization- and ensemble-based approach to tackle the complex task. In this study, we propose a snapshot-stacked ensemble deep neural network (SSED) approach to predict vehicle claims (in this study, we refer to a claim as being a breakdown or a fault) by considering vehicle operational life records. The approach includes three main modules: Data pre-processing, Dimensionality Reduction, and Ensemble Learning. The first module is developed to run a set of practices to integrate various sources of data, extract hidden information and segment the data into different time windows. In the second module, the most informative measurements to represent vehicle usage are selected through an adapted heuristic optimization approach. Finally, in the last module, the ensemble machine learning approach utilizes the selected measurements to map the vehicle usage to the breakdowns for the prediction. The proposed approach integrates, and uses, the following two sources of data, collected from thousands of heavy-duty trucks: Logged Vehicle Data (LVD) and Warranty Claim Data (WCD). The experimental results confirm the proposed system's effectiveness in predicting vehicle breakdowns. By adapting the optimization and snapshot-stacked ensemble deep networks, we demonstrate how sensor data, in the form of vehicle usage history, contributes to claim predictions. The experimental evaluation of the system on other application domains also indicated the generality of the proposed approach.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Tegen, Agnes
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Swedish Defense Research Agency (FOI), Stockholm, Sweden.
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Persson, Jan A.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Human Factors in Interactive Online Machine Learning2023Ingår i: HHAI 2023: Augmenting Human Intellect / [ed] Paul Lukowicz; Sven Mayer; Janin Koch; John Shawe-Taylor; Ilaria Tiddi, IOS Press, 2023, s. 33-45Konferensbidrag (Refereegranskat)
    Abstract [en]

    Interactive machine learning (ML) adds a human-in-the-loop aspect to a ML system. Even though the input from human users to the system is a central part of the concept, the uncertainty caused by the human feedback is often not considered in interactive ML. The assumption that the human user is expected to always provide correct feedback, typically does not hold in real-world scenarios. This is especially important for when the cognitive workload of the human is high, for instance in online learning from streaming data where there are time constraints for providing the feedback. We present experiments of interactive online ML with human participants, and compare the results to simulated experiments where humans are always correct. We found combining the two interactive learning paradigms, active learning and machine teaching, resulted in better performance compared to machine teaching alone. The results also showed an increased discrepancy between the experiments with human participants and the simulated experiments when the cognitive workload was increased. The findings suggest the importance of taking uncertainty caused by human factors into consideration in interactive ML, especially in situations which requires a high cognitive workload for the human.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Tsang, Kevin C H
    et al.
    Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK; Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK.
    Pinnock, Hilary
    Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
    Wilson, Andrew M
    Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK; Norwich Medical School, University of East Anglia, Norwich, UK; Norwich University Hospital Foundation Trust, Colney Lane, Norwich, UK.
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Shah, Syed Ahmar
    Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK; Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK.
    Home monitoring with connected mobile devices for asthma attack prediction with machine learning2023Ingår i: Scientific Data, E-ISSN 2052-4463, Vol. 10, nr 1, artikel-id 370Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Monitoring asthma is essential for self-management. However, traditional monitoring methods require high levels of active engagement, and some patients may find this tedious. Passive monitoring with mobile-health devices, especially when combined with machine-learning, provides an avenue to reduce management burden. Data for developing machine-learning algorithms are scarce, and gathering new data is expensive. A few datasets, such as the Asthma Mobile Health Study, are publicly available, but they only consist of self-reported diaries and lack any objective and passively collected data. To fill this gap, we carried out a 2-phase, 7-month AAMOS-00 observational study to monitor asthma using three smart-monitoring devices (smart-peak-flow-meter/smart-inhaler/smartwatch), and daily symptom questionnaires. Combined with localised weather, pollen, and air-quality reports, we collected a rich longitudinal dataset to explore the feasibility of passive monitoring and asthma attack prediction. This valuable anonymised dataset for phase-2 of the study (device monitoring) has been made publicly available. Between June-2021 and June-2022, in the midst of UK's COVID-19 lockdowns, 22 participants across the UK provided 2,054 unique patient-days of data.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Caramaschi, Sara
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
    Papini, Gabriele B.
    Department of Patient Care & Monitoring, Philips Research, 5656 AE Eindhoven, The Netherlands;Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.
    Caiani, Enrico G.
    Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;Istituto Auxologico Italiano, IRCCS, S. Luca Hospital, 20149 Milan, Italy.
    Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration2023Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 13, nr 7, s. 4175-4175Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tracking a person’s activities is relevant in a variety of contexts, from health and group-specific assessments, such as elderly care, to fitness tracking and human–computer interaction. In a clinical context, sensor-based activity tracking could help monitor patients’ progress or deterioration during their hospitalization time. However, during routine hospital care, devices could face displacements in their position and orientation caused by incorrect device application, patients’ physical peculiarities, or patients’ day-to-day free movement. These aspects can significantly reduce algorithms’ performances. In this work, we investigated how shifts in orientation could impact Human Activity Recognition (HAR) classification. To reach this purpose, we propose an HAR model based on a single three-axis accelerometer that can be located anywhere on the participant’s trunk, capable of recognizing activities from multiple movement patterns, and, thanks to data augmentation, can deal with device displacement. Developed models were trained and validated using acceleration measurements acquired in fifteen participants, and tested on twenty-four participants, of which twenty were from a different study protocol for external validation. The obtained results highlight the impact of changes in device orientation on a HAR algorithm and the potential of simple wearable sensor data augmentation for tackling this challenge. When applying small rotations (<20 degrees), the error of the baseline non-augmented model steeply increased. On the contrary, even when considering rotations ranging from 0 to 180 along the frontal axis, our model reached a f1-score of 0.85±0.110.85±0.11 against a baseline model f1-score equal to 0.49±0.120.49±0.12.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Persson, Jan A.
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Bugeja, Joseph
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Davidsson, Paul
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Holmberg, Johan
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Kebande, Victor R.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Mihailescu, Radu-Casian
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Sarkheyli-Hägele, Arezoo
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Tegen, Agnes
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    The Concept of Interactive Dynamic Intelligent Virtual Sensors (IDIVS): Bridging the Gap between Sensors, Services, and Users through Machine Learning2023Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 13, nr 11, artikel-id 6516Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper concerns the novel concept of an Interactive Dynamic Intelligent Virtual Sensor (IDIVS), which extends virtual/soft sensors towards making use of user input through interactive learning (IML) and transfer learning. In research, many studies can be found on using machine learning in this domain, but not much on using IML. This paper contributes by highlighting how this can be done and the associated positive potential effects and challenges. An IDIVS provides a sensor-like output and achieves the output through the data fusion of sensor values or from the output values of other IDIVSs. We focus on settings where people are present in different roles: from basic service users in the environment being sensed to interactive service users supporting the learning of the IDIVS, as well as configurators of the IDIVS and explicit IDIVS teachers. The IDIVS aims at managing situations where sensors may disappear and reappear and be of heterogeneous types. We refer to and recap the major findings from related experiments and validation in complementing work. Further, we point at several application areas: smart building, smart mobility, smart learning, and smart health. The information properties and capabilities needed in the IDIVS, with extensions towards information security, are introduced and discussed.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Jevinger, Åse
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Johansson, Emil
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Persson, Jan A.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Holmberg, Johan
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Context-Aware Travel Support During Unplanned Public Transport Disturbances2023Ingår i: Proceedings of the 9th International Conference on Vehicle Technology and Intelligent Transport Systems / [ed] Alexey Vinel, Jeroen Ploeg, Karsten Berns, Oleg Gisikhin, Setúbal, Portugal: SCITEPRESS , 2023, Vol. 1, s. 160-170, artikel-id 19Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper explores the possibilities and challenges of realizing a context-aware travel planner with bidirectional information exchange between the actor and the traveller during unplanned traffic disturbances. A prototype app is implemented and tested to identify potential benefits. The app uses data from open APIs, and beacons to detect the traveller context (which train or train platform the traveller is currently on). Alternative travel paths are presented to the user, and each alternative is associated with a certainty factor reflecting the reliability of the travel time prognoses. The paper also presents an interview study that investigates PT actors’ views on the potential use for actors and travellers of new information about certainty factors and travellers’ contexts, during unplanned traffic disturbances. The results show that this type of travel planner can be realized and that it enables travellers to find ways to reach their destination, in situations where the public t ravel planner only suggests infeasible travel paths. The value for the traveller of the certainty factors are also illustrated. Additionally, the results show that providing actors with information about traveller context and certainty factors opens up for the possibility of more advanced support for both the PT actor and the traveller.

    Ladda ner fulltext (pdf)
    fulltext
1234567 1 - 10 av 289
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf