Publikationer från Malmö universitet
Ändra sökning
Avgränsa sökresultatet
3456789 51 - 60 av 293
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Amouzad Mahdiraji, Saeid
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Holmgren, Johan
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Mihailescu, Radu-Casian
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Petersson, Jesper
    Region Skåne; Lund University.
    A Micro-Level Simulation Model for Analyzing the Use of MSUs in Southern Sweden2022Ingår i: Procedia Computer Science, E-ISSN 1877-0509, Vol. 198, s. 132-139Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A mobile stroke unit (MSU) is a special type of ambulance, where stroke patients can be diagnosed and provided intravenous treatment, hence allowing to cut down the time to treatment for stroke patients. We present a discrete event simulation (DES) model to study the potential benefits of using MSUs in the southern health care region of Sweden (SHR). We included the activities and actions used in the SHR for stroke patient transportation as events in the DES model, and we generated a synthetic set of stroke patients as input for the simulation model. In a scenario study, we compared two scenarios, including three MSUs each, with the current situation, having only regular ambulances. We also performed a sensitivity analysis to further evaluate the presented DES model. For both MSU scenarios, our simulation results indicate that the average time to treatment is expected to decrease for the whole region and for each municipality of SHR. For example, the average time to treatment in the SHR is reduced from 1.31h in the baseline scenario to 1.20h and 1.23h for the two MSU scenarios. In addition, the share of stroke patients who are expected to receive treatment within one hour is increased by a factor of about 3 for both MSU scenarios.

    Ladda ner fulltext (pdf)
    fulltext
  • 52.
    Tegen, Agnes
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Interactive Online Machine Learning2022Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    With the Internet of Things paradigm, the data generated by the rapidly increasing number of connected devices lead to new possibilities, such as using machine learning for activity recognition in smart environments. However, it also introduces several challenges. The sensors of different devices might be mobile and of different types, i.e. there is a need to handle streaming data from a dynamic and heterogeneous set of sensors. In machine learning, the performance is often linked to the availability and quality of annotated data. Annotating data is in general costly, but it can be even more challenging if there is not any, or a very small amount of, annotated data to train the model on at the start of learning. To handle these issues, we implement interactive and adaptive systems. By including human-in-the-loop, which we refer to as interactive machine learning, the input from users can be utilized to build the model. The type of input used in interactive machine learning is typically annotations of the data, i.e. correctly labelled data points. Generally, it is assumed that the user always provides correct labels in accordance with the chosen interactive learning strategy. In many real-world applications these assumptions are not realistic however, as users might provide incorrect labels or not provide labels at all in line with the chosen strategy.

    In this thesis we explore which interactive learning strategy types are possible in the given scenario and how they affect performance, as well as the effect of machine learning algorithms on the performance. We also study how a user who is not always reliable, i.e. who does not always provide a correct label when expected to, can affect performance. We propose a taxonomy of interactive online machine learning strategies and test how the different strategies affect performance through experiments on multiple datasets. Simulated experiments are compared to experiments with human participants, to verify the results. The findings show that the overall best performing interactive learning strategy is one where the user provides labels when current estimations are incorrect, but that the best performing machine learning algorithm depends on the problem scenario. The experiments also show that a decreased reliability of the user leads to decreased performance, especially when there is a limited amount of labelled data. The robustness of the machine learning algorithms differs, where e.g. Naïve Bayes classifier is better at handling a lower reliability of the user. We also present a systematic literature review on machine teaching, a subfield of interactive machine learning where the human is proactive in the interaction. The study shows that the area of machine teaching is rapidly evolving with an increased number of publications in recent years. However, as it is still maturing, there exists several open challenges that would benefit from further exploration, e.g. how human factors can affect performance.

    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (jpg)
    presentationsbild
  • 53.
    Munir, Hussan
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Vogel, Bahtijar
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Jacobsson, Andreas
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Artificial Intelligence and Machine Learning Approaches in Digital Education: A Systematic Revision2022Ingår i: Information, E-ISSN 2078-2489, Vol. 13, nr 4, artikel-id 203Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The use of artificial intelligence and machine learning techniques across all disciplines has exploded in the past few years, with the ever-growing size of data and the changing needs of higher education, such as digital education. Similarly, online educational information systems have a huge amount of data related to students in digital education. This educational data can be used with artificial intelligence and machine learning techniques to improve digital education. This study makes two main contributions. First, the study follows a repeatable and objective process of exploring the literature. Second, the study outlines and explains the literature's themes related to the use of AI-based algorithms in digital education. The study findings present six themes related to the use of machines in digital education. The synthesized evidence in this study suggests that machine learning and deep learning algorithms are used in several themes of digital learning. These themes include using intelligent tutors, dropout predictions, performance predictions, adaptive and predictive learning and learning styles, analytics and group-based learning, and automation. artificial neural network and support vector machine algorithms appear to be utilized among all the identified themes, followed by random forest, decision tree, naive Bayes, and logistic regression algorithms.

    Ladda ner fulltext (pdf)
    fulltext
  • 54.
    Soto-Leon, Vanesa
    et al.
    Hosp Nacl Paraplej, SESCAM, FENNSI Grp, Finca La Peraleda S-N, Toledo 45071, Spain..
    Torres-Llacsa, Mabel
    Hosp Nacl Paraplej, SESCAM, FENNSI Grp, Finca La Peraleda S-N, Toledo 45071, Spain..
    Mordillo-Mateos, Laura
    Hosp Nacl Paraplej, SESCAM, FENNSI Grp, Finca La Peraleda S-N, Toledo 45071, Spain.;Univ Castilla la Mancha, Toledo, Spain..
    Carrasco-Lopez, Carmen
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Hosp Nacl Paraplej, SESCAM, FENNSI Grp, Finca La Peraleda S-N, Toledo 45071, Spain..
    Pineda-Pardo, Jose A.
    HM Hosp, Hosp Univ HM Puerta Sur, HM CINAC Ctr Integral Neurociencias Abarca Campal, Madrid, Spain..
    Velasco, Ana, I
    Univ Alfonso X El Sabio, Madrid, Spain..
    Abad-Toribio, Laura
    Univ Alfonso X El Sabio, Madrid, Spain..
    Tornero, Jesus
    Hosp Los Madronos, Madrid, Spain..
    Foffani, Guglielmo
    HM Hosp, Hosp Univ HM Puerta Sur, HM CINAC Ctr Integral Neurociencias Abarca Campal, Madrid, Spain.;Hosp Nacl Paraplej, SESCAM, Neural Bioengn Grp, Toledo, Spain..
    Strange, Bryan A.
    Univ Politecn Madrid, Ctr Biomed Technol, Lab Clin Neurosci, Madrid, Spain..
    Oliviero, Antonio
    Hosp Nacl Paraplej, SESCAM, FENNSI Grp, Finca La Peraleda S-N, Toledo 45071, Spain.;Hosp Los Madronos, Madrid, Spain..
    Static magnetic field stimulation over motor cortex modulates resting functional connectivity in humans2022Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 12, nr 1, artikel-id 7834Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Focal application of transcranial static magnetic field stimulation (tSMS) over the human motor cortex induces local changes in cortical excitability. Whether tSMS can also induce distant network effects, and how these local and distant effects may vary over time, is currently unknown. In this study, we applied 10 min tSMS over the left motor cortex of healthy subjects using a real/sham parallel design. To measure tSMS effects at the sensori-motor network level, we used resting-state fMRI. Real tSMS, but not sham, reduced functional connectivity within the stimulated sensori-motor network. This effect of tSMS showed time-dependency, returning to sham levels after the first 5 min of fMRI scanning. With 10 min real tSMS over the motor cortex we did not observe effects in other functional networks examined (default mode and visual system networks). In conclusion, 10 min of tSMS over a location within the sensori-motor network reduces functional connectivity within the same functional network.

    Ladda ner fulltext (pdf)
    fulltext
  • 55.
    Ma, Yong
    et al.
    Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan 430063, China, also with the Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China, and also with the Chongqing Research Institute, Wuhan University of Technology, Chongqing 401120, China..
    Zhao, Yujiao
    Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan 430063, China, also with the Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China, and also with the Chongqing Research Institute, Wuhan University of Technology, Chongqing 401120, China..
    Li, Zhixiong
    Faculty of Mechanical Engineering, Opole University of Technology, 45758 Opole, Poland, and also with the Yonsei Frontier Laboratory, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea.
    Bi, Huaxiong
    Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan 430063, China, also with the Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China, and also with the Chongqing Research Institute, Wuhan University of Technology, Chongqing 401120, China..
    Wang, Jing
    Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan 430063, China, also with the Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China, and also with the Chongqing Research Institute, Wuhan University of Technology, Chongqing 401120, China..
    Malekian, Reza
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Sotelo, Miguel Angel
    Department of Computer Engineering, University of Alcalá, 28801 Alcalá de Henares, Spain..
    CCIBA*: An Improved BA* Based Collaborative Coverage Path Planning Method for Multiple Unmanned Surface Mapping Vehicles2022Ingår i: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016, Vol. 23, nr 10, s. 19578-19588Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The main emphasis of this work is placed on the problem of collaborative coverage path planning for unmanned surface mapping vehicles (USMVs). As a result, the collaborative coverage improved BA* algorithm (CCIBA*) is proposed. In the algorithm, coverage path planning for a single vehicle is achieved by task decomposition and level map updating. Then a multiple USMV collaborative behavior strategy is designed, which is composed of area division, recall and transfer, area exchange and recognizing obstacles. Moverover, multiple USMV collaborative coverage path planning can be achieved. Consequently, a high-efficiency and high-quality coverage path for USMVs can be implemented. Water area simulation results indicate that our CCIBA* brings about a substantial increase in the performances of path length, number of turning, number of units and coverage rate.

  • 56.
    Ouhaichi, Hamza
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Towards designing a flexible multimodal learning analytics system2022Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (jpg)
    preview
  • 57.
    Tseng, Fan-Hsun
    et al.
    Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan..
    Chen, Chi-Yuan
    Natl Ilan Univ, Dept Comp Sci & Informat Engn, Yilan, Taiwan..
    Malekian, Reza
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Nakano, Tadashi
    Osaka City Univ, Grad Sch Engn, Osaka, Japan..
    Zhang, Zhenjiang
    Beijing Jiaotong Univ, Sch Software Engn, Beijing, Peoples R China..
    Guest Editorial: AI-enabled intelligent network for 5G and beyond2022Ingår i: IET Communications, ISSN 1751-8628, E-ISSN 1751-8636, Vol. 16, nr 11, s. 1265-1267Artikel i tidskrift (Övrigt vetenskapligt)
  • 58.
    Dytckov, Sergei
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Persson, Jan A.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Lorig, Fabian
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Potential Benefits of Demand Responsive Transport in Rural Areas: A Simulation Study in Lolland, Denmark2022Ingår i: Sustainability, E-ISSN 2071-1050, Vol. 14, nr 6, artikel-id 3252Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In rural areas with low demand, demand responsive transport (DRT) can provide an alternative to the regular public transport bus lines, which are expensive to operate in such conditions. With simulation, we explore the potential effects of introducing a DRT service that replaces existing bus lines in Lolland municipality in Denmark, assuming that the existing demand remains unchanged. We set up the DRT service in such a way that its service quality (in terms of waiting time and in-vehicle time) is comparable to the replaced buses. The results show that a DRT service can be more cost efficient than regular buses and can produce significantly less CO2 emissions when the demand level is low. Additionally, we analyse the demand density at which regular buses become more cost efficient and explore how the target service quality of a DRT service can affect operational characteristics. Overall, we argue that DRT could be a more sustainable mode of public transport in low demand areas.

    Ladda ner fulltext (pdf)
    fulltext
  • 59.
    Jiang, Wei
    et al.
    Jishou Univ, Coll Informat Sci & Engn, Jishou 416000, Hunan, Peoples R China..
    Zhou, Kai-Qing
    Jishou Univ, Coll Informat Sci & Engn, Jishou 416000, Hunan, Peoples R China..
    Sarkheyli-Hägele, Arezoo
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Zain, Azlan Mohd
    Univ Teknol Malaysia, UTM Big Data Ctr, Skudai 80310, Johor, Malaysia..
    Modeling, reasoning, and application of fuzzy Petri net model: a survey2022Ingår i: Artificial Intelligence Review, ISSN 0269-2821, E-ISSN 1573-7462, Vol. 55, s. 6567-6605Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A fuzzy Petri net (FPN) is a powerful tool to model and analyze knowledge-based systems containing vague information. This paper systematically reviews recent developments of the FPN model from the following three perspectives: knowledge representation using FPN, reasoning mechanisms using an FPN framework, and the latest industrial applications using FPN. In addition, some specific modeling and reasoning approaches to FPN to solve the 'state-explosion problem' are illustrated. Furthermore, detailed analysis of the discussed aspects are shown to reveal some interesting findings, as well as their developmental history. Finally, we present conclusions and suggestions for future research directions.

  • 60.
    Salvi, Dario
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Ymeri, Gent
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Carrasco-Lopez, Carmen
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Tsang, Kevin C.H.
    University of Edinburgh, United Kingdom.
    Shah, Seyed Ahmar
    University of Edinburgh, United Kingdom.
    Mobistudy: Mobile-based, platform-independent, multi-dimensional data collection for clinical studies2022Ingår i: IoT 2021: Conference Proceedings, ACM Digital Library, 2022, s. 219-222Konferensbidrag (Refereegranskat)
    Abstract [en]

    Internet of Things (IoT) can work as a useful tool for clinical research. We developed a software platform that allows researchers to publish clinical studies and volunteers to participate into them using an app and connected IoT devices. The platform includes a REST API, a web interface for researchers and an app that collects data during tasks volunteers are invited to contribute. Nine tasks have been developed: Forms, Positioning, Finger tapping, Pulse-oximetry, Peak Flow measurement, Activity tracking, Data query, Queen’s College step test and Six-minute walk test. These leverage sensors embedded in the phone, connected Bluetooth devices and additional APIs like HealthKit and Google Fit. Currently, the platform is used in two clinical studies by 25 patients: an asthma management study in the United Kingdom, and a neuropathic pain management study in Spain.

3456789 51 - 60 av 293
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf