Publikationer från Malmö universitet
Ändra sökning
Avgränsa sökresultatet
2345678 41 - 50 av 293
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 41.
    Bugeja, Joseph
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Persson, Jan A.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    A Data-Centric Anomaly-Based Detection System for Interactive Machine Learning Setups2022Ingår i: Proceedings of the 18th International Conference on Web Information Systems and Technologies - WEBIST, SciTePress, 2022, s. 182-189Konferensbidrag (Refereegranskat)
    Abstract [en]

    A major concern in the use of Internet of Things (IoT) technologies in general is their reliability in the presence of security threats and cyberattacks. Particularly, there is a growing recognition that IoT environments featuring virtual sensing and interactive machine learning may be subject to additional vulnerabilities when compared to traditional networks and classical batch learning settings. Partly, this is as adversaries could more easily manipulate the user feedback channel with malicious content. To this end, we propose a data-centric anomaly-based detection system, based on machine learning, that facilitates the process of identifying anomalies, particularly those related to poisoning integrity attacks targeting the user feedback channel of interactive machine learning setups. We demonstrate the capabilities of the proposed system in a case study involving a smart campus setup consisting of different smart devices, namely, a smart camera, a climate sensmitter, smart lighting, a smart phone, and a user feedback channel over which users could furnish labels to improve detection of correct system states, namely, activity types happening inside a room. Our results indicate that anomalies targeting the user feedback channel can be accurately detected at 98% using the Random Forest classifier.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Jevinger, Åse
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Johansson, Emil
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Persson, Jan A.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Holmberg, Johan
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Kontextmedvetet resestöd vid störningar i kollektivtrafiken (juli 2021-oktober 2022): Slutrapport forskningsprojekt TRV 2021/406332022Rapport (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    fulltext
  • 43.
    Amouzad Mahdiraji, Saeid
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    On the Use of Simulation and Optimization for the Analysis and Planning of Prehospital Stroke Care2022Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Immediate treatment is of extreme importance for stroke patients. However, providing fast enough treatment for stroke patients is far from trivial, mainly due to logistical challenges and difficulties in diagnosing the correct stroke type. One way to reduce the time to treatment is to use so-called Mobile Stroke Units (MSUs), which allows to diagnose and provide treatment for stroke patients already at the patient scene. A well-designed stroke transport policy is vital to improve the access to treatment for stroke patients. Simulation and mathematical optimization are useful approaches for assessing and optimizing stroke transport policies, without endangering the health of the patients.

    The main purpose of this thesis is to contribute to improving the situation for stroke patients and to reducing the social impacts of stroke. The aim is to study how to use simulation and optimization to achieve improved analysis and planning of prehospital stroke care. In particular, we focus on assessing the potential use of MSUs in a geographic area. In this thesis, optimization is used to identify the optimal locations of MSUs, and simulation is used to assess different stroke transport policies, including MSU locations. The results of this thesis aim to support public health authorities when making decisions in the prehospital stroke care domain.

    In order to fulfill the aim of this thesis, we develop and analyze a number of different simulation and optimization models. First, we propose a macro-level simulation model, an average time to treatment estimation model, used to estimate the expected time to treatment for different parts of a geographic region. Using the proposed model, we generate two different MSU scenarios to explore the potential benefits of employing MSUs in Sweden’s southern healthcare region (SHR).  

    Second, we present an optimization model to identify the best placement of MSUs while making a trade-off between the efficiency and equity perspectives, providing maximum population coverage and equal service for all patients, respectively. The trade-off function used in the model makes use of the concepts of weighted average time to treatment to model efficiency and the time difference between the expected time to treatment for different geographical areas to model equity. In a scenario study applied in the SHR, we evaluate our optimization model by comparing the current situation with three MSU scenarios, including 1, 2, and 3 MSUs.

    Third, we present a micro-level discrete event simulation model to assess stroke transport policies, including MSUs, allowing us to model the behaviors of individual entities, such as patients and emergency vehicles, over time. We generate a synthetic set of stroke patients using a Poisson distribution, used as input in a scenario study.

    Finally, we present a modeling framework with reusable components, which aims to facilitate the construction of discrete event simulation models in the emergency medical services domain. The framework consists of a number of generic activities, which can be used to represent healthcare chains modeled in the form of flowcharts. As the framework includes activities and policies modeled on the general level, the framework can be used to create models only by providing input data and a care chain specification. We evaluate the framework by using it to build a model for simulating EMS activities related to the complex case of acute stroke.

    Ladda ner fulltext (pdf)
    Comprehensive summary
    Ladda ner (jpg)
    presentationsbild
  • 44.
    Leckner, Sara
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Tenor, Carina
    Karlstad universitet, Fakulteten för humaniora och samhällsvetenskap Institutionen för geografi, medier och kommunikation Medie- och kommunikationsvetenskap.
    Searching for a foothold: The (re)structuring of a new(s) media landscape2022Konferensbidrag (Refereegranskat)
    Abstract [en]

    In many countries the news media landscape has changed significantly in recent decades, particularly the locally based media have decreased in number or become more geographically remote. Hyperlocal media – locally based, community- oriented news with a high level of audience-participation possibilities – has been proposed as a potential replacement for established media that are quickly moving away from recognized norms, but have demonstrated a variety of possibilities as well as challenges in terms of structure, resources, and sustainability. Based on an extensive mapping of the Swedish news media landscape, this study traces the consistency and change of legacy and alternative media over the period 2016-2021. The aim is to make sense of the declining stability, the emergence of “news deserts'', and alternative forms of news media, by focusing on the structuring forces behind hyperlocal operations.

    The results show a transforming media landscape, with a reduced presence of legacy media, and a variety of hyperlocal news operations; from economically viable, small-scale organizations to idealistic individual projects, based on public, non-profit models. The restructuring of the landscape does not turn out to be so much about growing news deserts, as a thinning of news scrutiny, where legacy and hyperlocal media go in different directions in terms of business strategies: Where legacy media consolidates, the hyperlocals lean on idealism and localism. While the latter sometimes can be described as poor business skills, they can also be viewed as low-risk strategies, enabling trial and error and organic growth. Yet, highly personal and locally anchored rationales behind many hyperlocal initiatives make them challenging from a sustainability perspective. The conclusion is that the transforming media landscape can be described as a form of mutually related restructuring, where established and alternative media coexist in new ways. 

  • 45.
    Tsang, Kevin Cheuk Him
    et al.
    Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK; Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK.
    Pinnock, Hilary
    Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
    Wilson, Andrew M
    Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK; Norwich Medical School, University of East Anglia, Norwich, UK; Norwich University Hospital Foundation Trust, Colney Lane, Norwich, UK.
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Shah, Syed Ahmar
    Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK; Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK.
    Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol2022Ingår i: BMJ Open, E-ISSN 2044-6055, Vol. 12, nr 10, artikel-id e064166Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    INTRODUCTION: Supported self-management empowering people with asthma to detect early deterioration and take timely action reduces the risk of asthma attacks. Smartphones and smart monitoring devices coupled with machine learning could enhance self-management by predicting asthma attacks and providing tailored feedback.We aim to develop and assess the feasibility of an asthma attack predictor system based on data collected from a range of smart devices.

    METHODS AND ANALYSIS: A two-phase, 7-month observational study to collect data about asthma status using three smart monitoring devices, and daily symptom questionnaires. We will recruit up to 100 people via social media and from a severe asthma clinic, who are at risk of attacks and who use a pressurised metered dose relief inhaler (that fits the smart inhaler device).Following a preliminary month of daily symptom questionnaires, 30 participants able to comply with regular monitoring will complete 6 months of using smart devices (smart peak flow meter, smart inhaler and smartwatch) and daily questionnaires to monitor asthma status. The feasibility of this monitoring will be measured by the percentage of task completion. The occurrence of asthma attacks (definition: American Thoracic Society/European Respiratory Society Task Force 2009) will be detected by self-reported use (or increased use) of oral corticosteroids. Monitoring data will be analysed to identify predictors of asthma attacks. At the end of the monitoring, we will assess users' perspectives on acceptability and utility of the system with an exit questionnaire.

    ETHICS AND DISSEMINATION: Ethics approval was provided by the East of England - Cambridge Central Research Ethics Committee. IRAS project ID: 285 505 with governance approval from ACCORD (Academic and Clinical Central Office for Research and Development), project number: AC20145. The study sponsor is ACCORD, the University of Edinburgh.Results will be reported through peer-reviewed publications, abstracts and conference posters. Public dissemination will be centred around blogs and social media from the Asthma UK network and shared with study participants.

    Ladda ner fulltext (pdf)
    fulltext
  • 46.
    Alkhabbas, Fahed
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Alsadi, Mohammed
    Department of Computer Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
    Alawadi, Sadi
    Department of Information Technology, Uppsala University, 75105 Uppsala, Sweden; Center for Applied Intelligent Systems Research, School of Information Technology, Halmstad University, 30118 Halmstad, Sweden.
    Awaysheh, Feras M
    Institute of Computer Science, Delta Research Centre, University of Tartu, 51009 Tartu, Estonia.
    Kebande, Victor R.
    Department of Computer Science (DBlekinge Institute of Technology, 37179 Karlskrona, Sweden.
    Moghaddam, Mahyar T
    The Maersk Mc-Kinney Moller Institute (MMMI), University of Southern Denmark, 5230 Odense, Denmark.
    ASSERT: A Blockchain-Based Architectural Approach for Engineering Secure Self-Adaptive IoT Systems.2022Ingår i: Sensors, E-ISSN 1424-8220, Vol. 22, nr 18, artikel-id 6842Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Internet of Things (IoT) systems are complex systems that can manage mission-critical, costly operations or the collection, storage, and processing of sensitive data. Therefore, security represents a primary concern that should be considered when engineering IoT systems. Additionally, several challenges need to be addressed, including the following ones. IoT systems' environments are dynamic and uncertain. For instance, IoT devices can be mobile or might run out of batteries, so they can become suddenly unavailable. To cope with such environments, IoT systems can be engineered as goal-driven and self-adaptive systems. A goal-driven IoT system is composed of a dynamic set of IoT devices and services that temporarily connect and cooperate to achieve a specific goal. Several approaches have been proposed to engineer goal-driven and self-adaptive IoT systems. However, none of the existing approaches enable goal-driven IoT systems to automatically detect security threats and autonomously adapt to mitigate them. Toward bridging these gaps, this paper proposes a distributed architectural Approach for engineering goal-driven IoT Systems that can autonomously SElf-adapt to secuRity Threats in their environments (ASSERT). ASSERT exploits techniques and adopts notions, such as agents, federated learning, feedback loops, and blockchain, for maintaining the systems' security and enhancing the trustworthiness of the adaptations they perform. The results of the experiments that we conducted to validate the approach's feasibility show that it performs and scales well when detecting security threats, performing autonomous security adaptations to mitigate the threats and enabling systems' constituents to learn about security threats in their environments collaboratively.

    Ladda ner fulltext (pdf)
    fulltext
  • 47.
    Zhang, Xuan-Yu
    et al.
    Jishou Univ, Sch Commun & Elect Engn, Jishou 416000, Hunan, Peoples R China.;Jishou Univ, Lab Ethn Cultural Heritage Digitizat Wuling Mt Ar, Jishou 416000, Hunan, Peoples R China..
    Zhou, Kai-Qing
    Jishou Univ, Sch Commun & Elect Engn, Jishou 416000, Hunan, Peoples R China.;Jishou Univ, Lab Ethn Cultural Heritage Digitizat Wuling Mt Ar, Jishou 416000, Hunan, Peoples R China..
    Li, Peng-Cheng
    Jishou Univ, Sch Commun & Elect Engn, Jishou 416000, Hunan, Peoples R China.;Jishou Univ, Lab Ethn Cultural Heritage Digitizat Wuling Mt Ar, Jishou 416000, Hunan, Peoples R China..
    Xiang, Yin-Hong
    Jishou Univ, Sch Commun & Elect Engn, Jishou 416000, Hunan, Peoples R China.;Jishou Univ, Lab Ethn Cultural Heritage Digitizat Wuling Mt Ar, Jishou 416000, Hunan, Peoples R China..
    Zain, Azlan Mohd
    Univ Teknol Malaysia, UTM Big Data Ctr, Skudai 81310, Johor, Malaysia..
    Sarkheyli-Hägele, Arezoo
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    An Improved Chaos Sparrow Search Optimization Algorithm Using Adaptive Weight Modification and Hybrid Strategies2022Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 10, s. 96159-96179Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sparrow Search Algorithm (SSA) is a kind of novel swarm intelligence algorithm, which has been applied in-to various domains because of its unique characteristics, such as strong global search capability, few adjustable parameters, and a clear structure. However, the SSA still has some inherent weaknesses that hinder its further development, such as poor population diversity, weak local searchability, and falling into local optima easily. This manuscript proposes an improved chaos sparrow search optimization algorithm (ICSSOA) to overcome the mentioned shortcomings of the standard SSA. Firstly, the Cubic chaos mapping is introduced to increase the population diversity in the initialization stage. Then, an adaptive weight is employed to automatically adjust the search step for balancing the global search performance and the local search capability in different phases. Finally, a hybrid strategy of Levy flight and reverse learning is presented to perturb the position of individuals in the population according to the random strategy, and a greedy strategy is utilized to select individuals with higher fitness values to decrease the possibility of falling into the local optimum. The experiments are divided into two modules. The former investigates the performance of the proposed approach through 20 benchmark functions optimization using the ICSSOA, standard SSA, and other four SSA variants. In the latter experiment, the selected 20 functions are also optimized by the ICSSOA and other classic swarm intelligence algorithms, namely ACO, PSO, GWO, and WOA. Experimental results and corresponding statistical analysis revealed that only one function optimization test using the ICSSOA was slightly lower than the CSSOA and the WOA among the 20-function optimization. In most cases, the values for both accuracy and convergence speed are higher than other algorithms. The results also indicate that the ICSSOA has an outstanding ability to jump out of the local optimum.

  • 48.
    Alkhabbas, Fahed
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    De Sanctis, Martina
    Gran Sasso Sci Inst, Comp Sci Dept, Laquila, Italy..
    Bucchiarone, Antonio
    Fdn Bruno Kessler, Trento, Italy..
    Cicchetti, Antonio
    Malardalen Univ, IDT Dept, Vasteras, Sweden..
    Spalazzese, Romina
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Iovino, Ludovico
    Gran Sasso Sci Inst, Comp Sci Dept, Laquila, Italy..
    ROUTE: A Framework for Customizable Smart Mobility Planners2022Ingår i: IEEE 19TH INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA 2022), 2022, s. 169-179Konferensbidrag (Refereegranskat)
    Abstract [en]

    Multimodal journey planners are used worldwide to support travelers in planning and executing their journeys. Generated travel plans usually involve local mobility service providers, consider some travelers' preferences, and provide travelers information about the routes' current status and expected delays. However, those planners cannot fully consider the special situations of individual cities when providing travel planning services. Specifically, authorities of different cities might define customizable regulations or constraints of movements in the cities (e.g., due to construction works or pandemics). Moreover, with the transformation of traditional cities into smart cities, travel planners could leverage advanced monitoring features. Finally, most planners do not consider relevant information impacting travel plans, for instance, information that might be provided by travelers (e.g., a crowded square) or by mobility service providers (e.g., changing the timetable of a bus). To address the aforementioned shortcomings, in this paper, we propose ROUTE, a framework for customizable smart mobility planners that better serve the needs of travelers, local authorities, and mobility service providers in the dynamic ecosystem of smart cities. ROUTE is composed of an architecture, a process, and a prototype developed to validate the feasibility of the framework. Experiments' results show that the framework scales well in both centralized and distributed deployment settings.

  • 49.
    Holmberg, Lars
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Helgstrand, Carl Johan
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Hultin, Niklas
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    More Sanity Checks for Saliency Maps2022Ingår i: ISMIS 2022: Foundations of Intelligent Systems / [ed] Michelangelo Ceci; Sergio Flesca; Elio Masciari; Giuseppe Manco; Zbigniew W. Raś, Springer, 2022, s. 175-184Konferensbidrag (Refereegranskat)
    Abstract [en]

    Concepts are powerful human mental representations used to explain, reason and understand. In this work, we use theories on concepts as an analytical lens to compare internal knowledge representations in neural networks to human concepts. In two image classification studies we find an unclear alignment between these, but more pronounced, we find the need to further develop explanation methods that incorporate concept ontologies. 

    Ladda ner fulltext (pdf)
    fulltext
  • 50.
    Khoshkangini, Reza
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Rani Kalia, Nidhi
    Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad, Sweden.
    Ashwathanarayana, Sachin
    Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad, Sweden.
    Orand, Abbas
    Arriver Software AB, a Qualcomm Company, Linköping, Sweden.
    Maktobian, Jamal
    Information and Communication Technology, University of Tasmania, Hobart, Tasmania, Australia.
    Tajgardan, Mohsen
    Faculty of Electrical and Computer Engineering Qom University of Technology, Qom University.
    Vehicle Usage Extraction Using Unsupervised Ensemble Approach2022Ingår i: Proceedings of SAI Intelligent Systems Conference, Springer, 2022, s. 588-604Konferensbidrag (Refereegranskat)
    Abstract [en]

    Current heavy vehicles are equipped with hundreds of sensors that are used to continuously collect data in motion. The logged data enables researchers and industries to address three main transportation issues related to performance (e.g. fuel consumption, breakdown), environment (e.g., emission reduction), and safety (e.g. reducing vehicle accidents and incidents during maintenance activities). While according to the American Transportation Research Institute (ATRI), the operational cost of heavy vehicles is around 59%59% of overall costs, there are limited studies demonstrating the specific impacts of external factors (e.g. weather and road conditions, driver behavior) on vehicle performance. In this work, vehicle usage modeling was studied based on time to determine the different usage styles of vehicles and how they can affect vehicle performance. An ensemble clustering approach was developed to extract vehicle usage patterns and vehicle performance taking into consideration logged vehicle data (LVD) over time. Analysis results showed a strong correlation between driver behavior and vehicle performance that would require further investigation.

2345678 41 - 50 av 293
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf