Publikationer från Malmö universitet
Ändra sökning
Avgränsa sökresultatet
1234567 21 - 30 av 293
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 21.
    Holmberg, Lars
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Exploring Out-of-Distribution in Image Classification for Neural Networks Via Concepts2023Ingår i: Proceedings of Eighth International Congress on Information and Communication Technology / [ed] Yang, XS., Sherratt, R.S., Dey, N., Joshi, A., Springer, 2023, Vol. 1, s. 155-171Konferensbidrag (Refereegranskat)
    Abstract [en]

    The currently dominating artificial intelligence and machine learning technology, neural networks, builds on inductive statistical learning processes. Being void of knowledge that can be used deductively these systems cannot distinguish exemplars part of the target domain from those not part of it. This ability is critical when the aim is to build human trust in real-world settings and essential to avoid usage in domains wherein a system cannot be trusted. In the work presented here, we conduct two qualitative contextual user studies and one controlled experiment to uncover research paths and design openings for the sought distinction. Through our experiments, we find a need to refocus from average case metrics and benchmarking datasets toward systems that can be falsified. The work uncovers and lays bare the need to incorporate and internalise a domain ontology in the systems and/or present evidence for a decision in a fashion that allows a human to use our unique knowledge and reasoning capability. Additional material and code to reproduce our experiments can be found at https://github.com/k3larra/ood.

  • 22.
    Lorig, Fabian
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). K2 – The Swedish Knowledge Centre for Public Transport.
    Persson, Jan A.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). K2 – The Swedish Knowledge Centre for Public Transport.
    Michielsen, Astrid
    Trivector Traffic, Stockholm, Sweden.
    Simulating the Impact of Shared Mobility on Demand: a Study of Future Transportation Systems in Gothenburg, Sweden2023Ingår i: International Journal of Intelligent Transportation Systems Research, ISSN 1348-8503, Vol. 21, nr 1, s. 129-144Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Self-driving cars enable dynamic shared mobility, where customers are independent of schedules and fixed stops. This study aims to investigate the potential effects shared mobility can have on future transportation. We simulate multiple scenarios to analyze the effects different service designs might have on vehicle kilometers, on the required number of shared vehicles, on the potential replacement of private cars, and on service metrics such as waiting times, travel times, and detour levels. To demonstrate how simulation can be used to analyze future mobility, we present a case study of the city of Gothenburg in Sweden, where we model travel demand in the morning hours of a workday. The results show that a significant decrease of vehicle kilometers can be achieved if all private car trips are replaced by rideshare and that shared vehicles can potentially replace at least 5 private cars during the morning peak.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Hu, Xin
    et al.
    School of Mathematics and Statistics Science, Ludong University, Yantai, China.
    Zhu, Guibing
    Marine College, Zhejiang Ocean University, Zhoushan, China.
    Ma, Yong
    School of Navigation, Hubei Key Laboratory of Inland Shipping Technology, Wuhan University of Technology, Wuhan, China.
    Li, Zhixiong
    Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland.
    Malekian, Reza
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Sotelo, Miguel Angel
    Department of Computer Engineering, University of Alcalá, Alcalá de Henares, Spain.
    Dynamic Event-Triggered Adaptive Formation With Disturbance Rejection for Marine Vehicles Under Unknown Model Dynamics2023Ingår i: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, Vol. 72, nr 5, s. 5664-5676Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper investigates the dynamic event-triggered adaptive neural coordinated disturbance rejection for marine vehicles with external disturbances as the sinusoidal superpositions with unknown frequencies, amplitudes and phases. The vehicle movement mathematical models are transformed into parameterized expressions with the neural networks approximating nonlinear dynamics. The parametric exogenous systems are exploited to express external disturbances, which are converted into the linear canonical models with coordinated changes. The adaptive technique together with disturbance filters realize the disturbance estimation and rejection. By using the vectorial backstepping, the dynamic event-triggered adaptive neural coordinated disturbance rejection controller is derived with the dynamic event-triggering conditions being incorporated to reduce execution frequencies of vehicle's propulsion systems. The coordinated formation control can be achieved with the closed-loop semi-global stability. The dynamic event-triggered adaptive disturbance rejection scheme achieves the disturbance estimation and cancellation without requiring the a priori marine vehicle's model dynamics. Illustrative simulations and comparisons validate the proposed scheme.

  • 24.
    Zhu, Guibing
    et al.
    School of Maritime, Zhejiang Ocean University, Zhoushan, China.
    Ma, Yong
    School of Navigation, Hubei Key Laboratory of Inland Shipping Technology, Wuhan University of Technology, Wuhan, China.
    Li, Zhixiong
    Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland.
    Malekian, Reza
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Sotelo, M.
    Department of Computer Engineering, University of Alcal, Alcala de Henares (Madrid), Spain.
    Dynamic Event-Triggered Adaptive Neural Output Feedback Control for MSVs Using Composite Learning2023Ingår i: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016, Vol. 24, nr 1, s. 787-800Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information. Utilizing the specific advantages of adaptive neural network and disturbance observer, a classification reconstruction idea is developed. Based on this idea, a novel adaptive neural-based state observer with disturbance observer is proposed to recover the unmeasurable velocity. Under the vector-backstepping design framework, the classification reconstruction idea and adaptive neural-based state observer are used to resolve the control design issue for MSVs. To improve the control performance, the serial-parallel estimation model is introduced to obtain a prediction error, and then a composite learning law is designed by embedding the prediction error and estimate of lumped disturbance. To reduce the mechanical wear of actuator, a dynamic event triggering protocol is established between the control law and actuator. Finally, a new dynamic event-triggered composite learning adaptive neural output feedback control solution is developed. Employing the Lyapunov stability theory, it is strictly proved that all signals in the closed-loop control system of MSVs are bounded. Simulation and comparison results validate the effectiveness of control solution.

  • 25.
    Khoshkangini, Reza
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Mashhadi, Peyman
    Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden.
    Tegnered, Daniel
    Volvo Group Connected Solutions, Gothenburg, Sweden.
    Lundström, Jens
    Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden.
    Rögnvaldsson, Thorsteinn
    Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden.
    Predicting Vehicle Behavior Using Multi-task Ensemble Learning2023Ingår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 212, s. 118716-118716, artikel-id 118716Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Vehicle utilization analysis is an essential tool for manufacturers to understand customer needs, improve equipment uptime, and to collect information for future vehicle and service development. Typically today, this behavioral modeling is done on high-resolution time-resolved data with features such as GPS position and fuel consumption. However, high-resolution data is costly to transfer and sensitive from a privacy perspective. Therefore, such data is typically only collected when the customer pays for extra services relying on that data. This motivated us to develop a multi-task ensemble approach to transfer knowledge from the high-resolution data and enable vehicle behavior prediction from low-resolution but high dimensional data that is aggregated over time in the vehicles. This study proposes a multi-task snapshot-stacked ensemble (MTSSE) deep neural network for vehicle behavior prediction by considering vehicles’ low-resolution operational life records. The multi-task ensemble approach utilizes the measurements to map the low-frequency vehicle usage to the vehicle behaviors defined from the high-resolution time-resolved data. Two data sources are integrated and used: high-resolution data called Dynafleet, and low-resolution so-called Logged Vehicle Data (LVD). The experimental results demonstrate the proposed approach’s effectiveness in predicting the vehicle behavior from low frequency data. With the suggested multi-task snapshot-stacked ensemble deep network, it is shown how low-resolution sensor data can highly contribute to predicting multiple vehicle behaviors simultaneously while using only one single training process.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Frennert, Susanne
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Moral distress and ethical decision-making of eldercare professionals involved in digital service transformation.2023Ingår i: Disability and Rehabilitation: Assistive Technology, ISSN 1748-3107, E-ISSN 1748-3115, Vol. 18, nr 2, s. 156-165Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    AIM: Technology affects almost all aspects of modern eldercare. Ensuring ethical decision-making is essential as eldercare becomes more digital; each decision affects a patient's life, self-esteem, health and wellness.

    METHODS: We conducted a survey and interviews with eldercare professionals to better understand the behavioural ethics and decision making involved in the digital transition of eldercare.

    CONCLUSION: Our qualitative analysis showed three recurrent roles among eldercare professionals in regard to digital service transformation; makers, implementers and maintainers. All three encountered challenging and stressful ethical dilemmas due to uncertainty and a lack of control. The matter of power relations, the attempts to standardize digital solutions and the conflict between cost efficiency and if digital care solutions add value for patients, all caused moral dilemmas for eldercare professionals. The findings suggest a need for organizational infrastructure that promotes ethical conduct and behaviour, ethics training and access to related resources. Implications for rehabilitation The transition to digital care service is not neutral, but value-laden. Digital transformation affects ethical behaviour and decision-making. The decision as to which digital services should be developed and deployed must include eldercare professionals and not lay solely in the hands of managers, technologists and economists. We must move away from attempting to fit standardized solutions to a heterogenous group of older patients; accommodating the pluralism of patients' needs and wants protects their dignity, autonomy and independence. As digital care practices evolve, so too must organizational structures that promote ethical conduct.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Skiöld, David
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Arora, Shivani
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Mihailescu, Radu-Casian
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Balaghi, Ramtin
    Volvo Cars, Gothenburg, Sweden..
    Forecasting key performance indicators for smart connected vehicles2022Ingår i: Advances in artificial intelligence: IBERAMIA 2022 / [ed] A C B Garcia, M Ferro, J C R Ribon, Springer, 2022, Vol. 13788, s. 414-415Konferensbidrag (Refereegranskat)
    Abstract [en]

    As connectivity has been introduced to the car industry, automotive companies have in-use cars which are connected to the internet. A key concern in this context represents the difficulty of knowing how the connection quality changes over time and if there are associated issues. In this work we describe the use of CDR data from connected cars supplied by Volvo to build and study forecasting models that predict how relevant KPIs change over time. Our experiments show promising results for this predictive task, which can lead to improving user experience of connectivity in smart vehicles.

  • 28.
    Zietsman, Grant
    et al.
    Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa.
    Malekian, Reza
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa.
    Modelling of a Speech-to-Text Recognition System for Air Traffic Control and NATO Air Command2022Ingår i: Journal of Internet Technology, ISSN 1607-9264, E-ISSN 2079-4029, Vol. 23, nr 7, s. 1527-1539Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Accent invariance in speech recognition is a chal- lenging problem especially in the are of aviation. In this paper a speech recognition system is developed to transcribe accented speech between pilots and air traffic controllers. The system allows handling of accents in continuous speech by modelling phonemes using Hidden Markov Models (HMMs) with Gaussian mixture model (GMM) probability density functions for each state. These phonemes are used to build word models of the NATO phonetic alphabet as well as the numerals 0 to 9 with transcriptions obtained from the Carnegie Mellon University (CMU) pronouncing dictionary. Mel-Frequency Cepstral Co-efficients (MFCC) with delta and delta-delta coefficients are used for the feature extraction process. Amplitude normalisation and covariance scaling is implemented to improve recognition accuracy. A word error rate (WER) of 2% for seen speakers and 22% for unseen speakers is obtained.

  • 29.
    Tell, Amanda
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Hägred, Carl
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Mihailescu, Radu-Casian
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Perceptions of Time: Determine the Time of an Analogue Watch using Computer Vision2022Ingår i: 2022 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), Institute of Electrical and Electronics Engineers (IEEE), 2022Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper explores the problem of determining the time of an analogue wristwatch by developing two systems and conducting a comparative study. The first system uses OpenCV to find the watch hands and applies geometrical techniques to calculate the time. The second system uses Machine Learning by building a neural network to classify images in Tensorflow using a multi-labelling approach. The results show that in a set environment the geometric-based approach performs better than the Machine Learning model. The geometric system predicted time correctly with an accuracy of 80% whereas the best Machine Learning model only achieves 74%. Experiments show that the accuracy of the neural network model did increase when using data augmentation, however there was no significant improvement when adding synthetic data to our training set.

  • 30.
    Ymeri, Gent
    et al.
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Salvi, Dario
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Thanasis, Tsanas
    Usher Institute, The University of Edinburgh, UK.
    Svenningsson, Per
    Department of Clinical Neuroscience, Karolinska Institute.
    Mobile-based multi-dimensional data collection for Parkinson’s symptoms in home environments2022Konferensbidrag (Refereegranskat)
    Abstract [en]

    We extended the Mobistudy app for clinical research in order to gather data about Parkinson’s motor and non-motor symptoms. We developed 5 tests that make use of the phone’s embedded sensors and 3 questionnaires. We show through data collected by healthy individuals simulating PD symptoms that the tests are able to identify the presence of symptoms.

    Ladda ner fulltext (pdf)
    fulltext
1234567 21 - 30 av 293
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf