Publikationer från Malmö universitet
Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ashouri, Majid
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Lorig, Fabian
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Spalazzese, Romina
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Edge Computing Simulators for IoT System Design: An Analysis of Qualities and Metrics2019Inngår i: Future Internet, E-ISSN 1999-5903, Vol. 11, nr 11, s. 235-246Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The deployment of Internet of Things (IoT) applications is complex since many quality characteristics should be taken into account, for example, performance, reliability, and security. In this study, we investigate to what extent the current edge computing simulators support the analysis of qualities that are relevant to IoT architects who are designing an IoT system. We first identify the quality characteristics and metrics that can be evaluated through simulation. Then, we study the available simulators in order to assess which of the identified qualities they support. The results show that while several simulation tools for edge computing have been proposed, they focus on a few qualities, such as time behavior and resource utilization. Most of the identified qualities are not considered and we suggest future directions for further investigation to provide appropriate support for IoT architects.

    Fulltekst (pdf)
    fulltext
  • 2.
    Florea, George Albert
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Mihailescu, Radu-Casian
    Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Multimodal Deep Learning for Group Activity Recognition in Smart Office Environments2020Inngår i: Future Internet, E-ISSN 1999-5903, Vol. 12, nr 8, artikkel-id 133Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Deep learning (DL) models have emerged in recent years as the state-of-the-art technique across numerous machine learning application domains. In particular, image processing-related tasks have seen a significant improvement in terms of performance due to increased availability of large datasets and extensive growth of computing power. In this paper we investigate the problem of group activity recognition in office environments using a multimodal deep learning approach, by fusing audio and visual data from video. Group activity recognition is a complex classification task, given that it extends beyond identifying the activities of individuals, by focusing on the combinations of activities and the interactions between them. The proposed fusion network was trained based on the audio-visual stream from the AMI Corpus dataset. The procedure consists of two steps. First, we extract a joint audio-visual feature representation for activity recognition, and second, we account for the temporal dependencies in the video in order to complete the classification task. We provide a comprehensive set of experimental results showing that our proposed multimodal deep network architecture outperforms previous approaches, which have been designed for unimodal analysis, on the aforementioned AMI dataset.

    Fulltekst (pdf)
    fulltext
  • 3.
    Vogel, Bahtijar
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Dong, Yuji
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Emruli, Blerim
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Lund University.
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Spalazzese, Romina
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    What is an Open IoT Platform?: Insights from a Systematic Mapping Study2020Inngår i: Future Internet, E-ISSN 1999-5903, Vol. 12, nr 4Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Today, the Internet of Things (IoT) is mainly associated with vertically integrated systems that often are closed and fragmented in their applicability. To build a better IoT ecosystem, the open IoT platform has become a popular term in the recent years. However, this term is usually used in an intuitive way without clarifying the openness aspects of the platforms. The goal of this paper is to characterize the openness types of IoT platforms and investigate what makes them open. We conducted a systematic mapping study by retrieving data from 718 papers. As a result of applying the inclusion and exclusion criteria, 221 papers were selected for review. We discovered 46 IoT platforms that have been characterized as open, whereas 25 platforms are referred as open by some studies rather than the platforms themselves. We found that the most widely accepted and used open IoT platforms are NodeMCU and ThingSpeak that together hold a share of more than 70% of the declared open IoT platforms in the selected papers. The openness of an IoT platform is interpreted into different openness types. Our study results show that the most common openness type encountered in open IoT platforms is open-source, but also open standards, open APIs, open data and open layers are used in the literature. Finally, we propose a new perspective on how to define openness in the context of IoT platforms by providing several insights from the different stakeholder viewpoints.

    Fulltekst (pdf)
    fulltext
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf