Publikationer från Malmö universitet
Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aladwan, Mohammad N.
    et al.
    Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Intelixentes, Santiago De Compostela 15782, Spain..
    Awaysheh, Feras M.
    Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Intelixentes, Santiago De Compostela 15782, Spain..
    Alawadi, Sadi
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Alazab, Mamoun
    Charles Darwin Univ, Coll Engn IT & Environm, Casuarina, NT 0810, Australia..
    Pena, Tomas F.
    Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Intelixentes, Santiago De Compostela 15782, Spain..
    Cabaleiro, Jose C.
    Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Intelixentes, Santiago De Compostela 15782, Spain..
    TrustE-VC: Trustworthy Evaluation Framework for Industrial Connected Vehicles in the Cloud2020Ingår i: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, E-ISSN 1941-0050, Vol. 16, nr 9, s. 6203-6213Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The integration between cloud computing and vehicular ad hoc networks, namely, vehicular clouds (VCs), has become a significant research area. This integration was proposed to accelerate the adoption of intelligent transportation systems. The trustworthiness in VCs is expected to carry more computing capabilities that manage large-scale collected data. This trend requires a security evaluation framework that ensures data privacy protection, integrity of information, and availability of resources. To the best of our knowledge, this is the first study that proposes a robust trustworthiness evaluation of vehicular cloud for security criteria evaluation and selection. This article proposes three-level security features in order to develop effectiveness and trustworthiness in VCs. To assess and evaluate these security features, our evaluation framework consists of three main interconnected components: 1) an aggregation of the security evaluation values of the security criteria for each level; 2) a fuzzy multicriteria decision-making algorithm; and 3) a simple additive weight associated with the importance-performance analysis and performance rate to visualize the framework findings. The evaluation results of the security criteria based on the average performance rate and global weight suggest that data residency, data privacy, and data ownership are the most pressing challenges in assessing data protection in a VC environment. Overall, this article paves the way for a secure VC using an evaluation of effective security features and underscores directions and challenges facing the VC community. This article sheds light on the importance of security by design, emphasizing multiple layers of security when implementing industrial VCs.

  • 2.
    Alawadi, Sadi
    et al.
    Blekinge Inst Technol, Dept Comp Sci, S-37179 Karlskrona, Sweden; Univ Santiago de Compostela, Comp Graph & Data Engn COGRADE Res Grp, Santiago De Compostela 15705, Spain.
    Alkharabsheh, Khalid
    Al Balqa Appl Univ, Prince Abdullah bin Ghazi Fac Informat & Commun Te, Software Engn Dept, As Salt 19117, Jordan.
    Alkhabbas, Fahed
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Kebande, Victor R.
    Blekinge Inst Technol, Dept Comp Sci, S-37179 Karlskrona, Sweden.
    Awaysheh, Feras M.
    Univ Tartu, Inst Comp Sci, Delta Res Ctr, EE-51009 Tartu, Estonia.
    Palomba, Fabio
    Univ Salerno, Dept Comp Sci, I-84084 Fisciano, Italy.
    Awad, Mohammed
    Arab Amer Univ, Dept Comp Syst Engn, Jenin 00970, Palestine.
    FedCSD: A Federated Learning Based Approach for Code-Smell Detection2024Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 12, s. 44888-44904Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing a scalable solution for continuously integrating new patterns and practices in code quality management. However, the current literature is still missing such capabilities. This paper addresses the previous challenges by proposing a Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting "God Class," to enable organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct experiments using manually validated datasets to detect and analyze code smell scenarios to validate our approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets, with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest (98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy of 98.34%, comparable to the centralized model's highest accuracy. The application of federated ML techniques demonstrates promising performance improvements in code-smell detection, benefiting both software developers and researchers.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Alawadi, Sadi
    et al.
    Uppsala University, Sweden.
    Kebande, Victor R.
    Umeå University, Sweden.
    Dong, Yuji
    School of Internet of ThingsXi’an Jiaotong-Liverpool UniversitySuzhouChina.
    Bugeja, Joseph
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Persson, Jan A.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    A Federated Interactive Learning IoT-Based Health Monitoring Platform2021Ingår i: New Trends in Database and Information Systems, Springer, 2021, s. 235-246Konferensbidrag (Refereegranskat)
    Abstract [en]

    Remote health monitoring is a trend for better health management which necessitates the need for secure monitoring and privacy-preservation of patient data. Moreover, accurate and continuous monitoring of personal health status may require expert validation in an active learning strategy. As a result, this paper proposes a Federated Interactive Learning IoT-based Health Monitoring Platform (FIL-IoT-HMP) which incorporates multi-expert feedback as ‘Human-in-the-loop’ in an active learning strategy in order to improve the clients’ Machine Learning (ML) models. The authors have proposed an architecture and conducted an experiment as a proof of concept. Federated learning approach has been preferred in this context given that it strengthens privacy by allowing the global model to be trained while sensitive data is retained at the local edge nodes. Also, each model’s accuracy is improved while privacy and security of data has been upheld.

  • 4.
    Alawadi, Sadi
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Mera, David
    Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
    Fernandez-Delgado, Manuel
    Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
    Alkhabbas, Fahed
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings2022Ingår i: Energy Systems, Springer Verlag, ISSN 1868-3967, E-ISSN 1868-3975, Vol. 13, nr 3, s. 689-705Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The international community has largely recognized that the Earth's climate is changing. Mitigating its global effects requires international actions. The European Union (EU) is leading several initiatives focused on reducing the problems. Specifically, the Climate Action tries to both decrease EU greenhouse gas emissions and improve energy efficiency by reducing the amount of primary energy consumed, and it has pointed to the development of efficient building energy management systems as key. In traditional buildings, households are responsible for continuously monitoring and controlling the installed Heating, Ventilation, and Air Conditioning (HVAC) system. Unnecessary energy consumption might occur due to, for example, forgetting devices turned on, which overwhelms users due to the need to tune the devices manually. Nowadays, smart buildings are automating this process by automatically tuning HVAC systems according to user preferences in order to improve user satisfaction and optimize energy consumption. Towards achieving this goal, in this paper, we compare 36 Machine Learning algorithms that could be used to forecast indoor temperature in a smart building. More specifically, we run experiments using real data to compare their accuracy in terms of R-coefficient and Root Mean Squared Error and their performance in terms of Friedman rank. The results reveal that the ExtraTrees regressor has obtained the highest average accuracy (0.97%) and performance (0,058%) over all horizons.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Alkhabbas, Fahed
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Alawadi, Sadi
    School of Information Technology, Halmstad University, Halmstad, Sweden.
    Ayyad, Majed
    Birzeit University, Department of Computer Science, Palestine.
    Spalazzese, Romina
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    ART4FL: An Agent-Based Architectural Approach for Trustworthy Federated Learning in the IoT2023Ingår i: 2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), Institute of Electrical and Electronics Engineers (IEEE), 2023Konferensbidrag (Refereegranskat)
    Abstract [en]

    The integration of the Internet of Things (IoT) and Machine Learning (ML) technologies has opened up for the development of novel types of systems and services. Federated Learning (FL) has enabled the systems to collaboratively train their ML models while preserving the privacy of the data collected by their IoT devices and objects. Several FL frameworks have been developed, however, they do not enable FL in open, distributed, and heterogeneous IoT environments. Specifically, they do not support systems that collect similar data to dynamically discover each other, communicate, and negotiate about the training terms (e.g., accuracy, communication latency, and cost). Towards bridging this gap, we propose ART4FL, an end-to-end framework that enables FL in open IoT settings. The framework enables systems' users to configure agents that participate in FL on their behalf. Those agents negotiate and make commitments (i.e., contractual agreements) to dynamically form federations. To perform FL, the framework deploys the needed services dynamically, monitors the training rounds, and calculates agents' trust scores based on the established commitments. ART4FL exploits a blockchain network to maintain the trust scores, and it provides those scores to negotiating agents' during the federations' formation phase.

  • 6.
    Alkhabbas, Fahed
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Alawadi, Sadi
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Spalazzese, Romina
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Davidsson, Paul
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Activity Recognition and User Preference Learning for Automated Configuration of IoT Environments2020Ingår i: IoT '20: Proceedings of the 10th International Conference on the Internet of Things, New York, United States: ACM Digital Library, 2020, s. 1-8, artikel-id 3Konferensbidrag (Refereegranskat)
    Abstract [en]

    Internet of Things (IoT) environments encompass different types of devices and objects that offer a wide range of services. The dynamicity and uncertainty of those environments, including the mobility of users and devices, make it hard to foresee at design time available devices, objects, and services. For the users to benefit from such environments, they should be proposed services that are relevant to the specific context and can be provided by available things. Moreover, environments should be configured automatically based on users' preferences. To address these challenges, we propose an approach that leverages Artificial Intelligence techniques to recognize users' activities and provides relevant services to support users to perform their activities. Moreover, our approach learns users' preferences and configures their environments accordingly by dynamically forming, enacting, and adapting goal-driven IoT systems. In this paper, we present a conceptual model, a multi-tier architecture, and processes of our approach. Moreover, we report about how we validated the feasibility and evaluated the scalability of the approach through a prototype that we developed and used.

  • 7.
    Alkhabbas, Fahed
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Alsadi, Mohammed
    Department of Computer Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
    Alawadi, Sadi
    Department of Information Technology, Uppsala University, 75105 Uppsala, Sweden; Center for Applied Intelligent Systems Research, School of Information Technology, Halmstad University, 30118 Halmstad, Sweden.
    Awaysheh, Feras M
    Institute of Computer Science, Delta Research Centre, University of Tartu, 51009 Tartu, Estonia.
    Kebande, Victor R.
    Department of Computer Science (DBlekinge Institute of Technology, 37179 Karlskrona, Sweden.
    Moghaddam, Mahyar T
    The Maersk Mc-Kinney Moller Institute (MMMI), University of Southern Denmark, 5230 Odense, Denmark.
    ASSERT: A Blockchain-Based Architectural Approach for Engineering Secure Self-Adaptive IoT Systems.2022Ingår i: Sensors, E-ISSN 1424-8220, Vol. 22, nr 18, artikel-id 6842Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Internet of Things (IoT) systems are complex systems that can manage mission-critical, costly operations or the collection, storage, and processing of sensitive data. Therefore, security represents a primary concern that should be considered when engineering IoT systems. Additionally, several challenges need to be addressed, including the following ones. IoT systems' environments are dynamic and uncertain. For instance, IoT devices can be mobile or might run out of batteries, so they can become suddenly unavailable. To cope with such environments, IoT systems can be engineered as goal-driven and self-adaptive systems. A goal-driven IoT system is composed of a dynamic set of IoT devices and services that temporarily connect and cooperate to achieve a specific goal. Several approaches have been proposed to engineer goal-driven and self-adaptive IoT systems. However, none of the existing approaches enable goal-driven IoT systems to automatically detect security threats and autonomously adapt to mitigate them. Toward bridging these gaps, this paper proposes a distributed architectural Approach for engineering goal-driven IoT Systems that can autonomously SElf-adapt to secuRity Threats in their environments (ASSERT). ASSERT exploits techniques and adopts notions, such as agents, federated learning, feedback loops, and blockchain, for maintaining the systems' security and enhancing the trustworthiness of the adaptations they perform. The results of the experiments that we conducted to validate the approach's feasibility show that it performs and scales well when detecting security threats, performing autonomous security adaptations to mitigate the threats and enabling systems' constituents to learn about security threats in their environments collaboratively.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Fakhouri, Hussam N
    et al.
    Department of Data Science and Artificial Intelligence, The University of Petra, Amman, Jordanc.
    Alawadi, Sadi
    Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden; Computer Graphics and Data Engineering (COGRADE) Research Group, University of Santiago de Compostela, Santiago de Compostela, Spain.
    Awaysheh, Feras M
    Institute of Computer Science, Delta Research Centre, University of Tartu, Tartu, Estonia.
    Alkhabbas, Fahed
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Zraqou, Jamal
    Virtual and Augment Reality Department, Faculty of Information Technology, University of Petra, Amman, Jordan.
    A cognitive deep learning approach for medical image processing2024Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 14, nr 1, artikel-id 4539Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In ophthalmic diagnostics, achieving precise segmentation of retinal blood vessels is a critical yet challenging task, primarily due to the complex nature of retinal images. The intricacies of these images often hinder the accuracy and efficiency of segmentation processes. To overcome these challenges, we introduce the cognitive DL retinal blood vessel segmentation (CoDLRBVS), a novel hybrid model that synergistically combines the deep learning capabilities of the U-Net architecture with a suite of advanced image processing techniques. This model uniquely integrates a preprocessing phase using a matched filter (MF) for feature enhancement and a post-processing phase employing morphological techniques (MT) for refining the segmentation output. Also, the model incorporates multi-scale line detection and scale space methods to enhance its segmentation capabilities. Hence, CoDLRBVS leverages the strengths of these combined approaches within the cognitive computing framework, endowing the system with human-like adaptability and reasoning. This strategic integration enables the model to emphasize blood vessels, accurately segment effectively, and proficiently detect vessels of varying sizes. CoDLRBVS achieves a notable mean accuracy of 96.7%, precision of 96.9%, sensitivity of 99.3%, and specificity of 80.4% across all of the studied datasets, including DRIVE, STARE, HRF, retinal blood vessel and Chase-DB1. CoDLRBVS has been compared with different models, and the resulting metrics surpass the compared models and establish a new benchmark in retinal vessel segmentation. The success of CoDLRBVS underscores its significant potential in advancing medical image processing, particularly in the realm of retinal blood vessel segmentation.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Kebande, Victor R.
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Electrical and Space Engineering, Luleå University of Technology, Luleå, 971 87, Sweden.
    Alawadi, Sadi
    Uppsala Universitet.
    Awaysheh, Feras
    University of Tartu.
    Persson, Jan A.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Active Machine Learning Adversarial Attack Detection in the User Feedback Process2021Ingår i: IEEE Access, E-ISSN 2169-3536, E-ISSN 2169-3536, Vol. 9Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Modern Information and Communication Technology (ICT)-based applications utilize currenttechnological advancements for purposes of streaming data, as a way of adapting to the ever-changingtechnological landscape. Such efforts require providing accurate, meaningful, and trustworthy output fromthe streaming sensors particularly during dynamic virtual sensing. However, to ensure that the sensingecosystem is devoid of any sensor threats or active attacks, it is paramount to implement secure real-timestrategies. Fundamentally, real-time detection of adversarial attacks/instances during the User FeedbackProcess (UFP) is the key to forecasting potential attacks in active learning. Also, according to existingliterature, there lacks a comprehensive study that has a focus on adversarial detection from an activemachine learning perspective at the time of writing this paper. Therefore, the authors posit the importance ofdetecting adversarial attacks in active learning strategy. Attack in the context of this paper through a UFPThreat driven model has been presented as any action that exerts an alteration to the learning system ordata. To achieve this, the study employed ambient data collected from a smart environment human activityrecognition from (Continuous Ambient Sensors Dataset, CASA) with fully labeled connections, where weintentionally subject the Dataset to wrong labels as a targeted/manipulative attack (by a malevolent labeler)in the UFP, with an assumption that the user-labels were connected to unique identities. While the dataset’sfocus is to classify tasks and predict activities, our study gives a focus on active adversarial strategies froman information security point of view. Furthermore, the strategies for modeling threats have been presentedusing the Meta Attack Language (MAL) compiler for purposes adversarial detection. The findings fromthe experiments conducted have shown that real-time adversarial identification and profiling during the UFPcould significantly increase the accuracy during the learning process with a high degree of certainty and pavesthe way towards an automated adversarial detection and profiling approaches on the Internet of CognitiveThings (ICoT).

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Kebande, Victor R.
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Alawadi, Sadi
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Bugeja, Joseph
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Persson, Jan A.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Olsson, Carl Magnus
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
    Leveraging Federated Learning & Blockchain to counter Adversarial Attacks in Incremental Learning2020Ingår i: IoT '20 Companion: 10th International Conference on the Internet of Things Companion, ACM Digital Library, 2020, s. 1-5, artikel-id 2Konferensbidrag (Refereegranskat)
    Abstract [en]

    Whereas data labelling in IoT applications is costly, it is also time consuming to train a supervised Machine Learning (ML) algorithm. Hence, a human oracle is required to gradually annotate the data patterns at run-time to improve the models’ learning behavior, through an active learning strategy in form of User Feedback Process (UFP). Consequently, it is worth to note that during UFP there may exist malicious content that may subject the learning model to be vulnerable to adversarial attacks, more so, manipulative attacks. We argue in this position paper, that there are instances during incremental learning, where the local data model may present wrong output, if retraining is done using data that has already been subjected to adversarial attack. We propose a Distributed Interactive Secure Federated Learning (DISFL) framework that utilizes UFP in the edge and fog node, that subsequently increases the amount of labelled personal local data for the ML model during incremental training. Furthermore, the DISFL framework addresses data privacy by leveraging federated learning, where only the model's knowledge is moved to a global unit, herein referred to as Collective Intelligence Node (CIN). During incremental learning, this would then allow the creation of an immutable chain of data that has to be trained, which in its entirety is tamper-free while increasing trust between parties. With a degree of certainty, this approach counters adversarial manipulation during incremental learning in active learning context at the same time strengthens data privacy, while reducing the computation costs.

  • 11.
    Kebande, Victor R.
    et al.
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Ikuesan, Richard
    Cyber and Network Security Department, Science and Technology Division, Community College of Qatar, Qatar.
    Karie, Nickson
    Edith Cowan University Australia.
    Alawadi, Sadi
    Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
    Kim-Kwang, Raymond Choo
    University of Texas at San Antonio.
    Al-Dhaqm, Arafat
    Universiti Teknologi Malysia.
    Quantifying the need for supervised machine learning in conducting liveforensic analysis of emergent configurations (ECO) in IoT environments2020Ingår i: Forensic Science International: Reports, ISSN 2665-9107, Vol. 2, artikel-id 100122Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    Machine learning has been shown as a promising approach to mine larger datasets, such as those that comprise datafrom a broad range of Internet of Things devices, across complex environment(s) to solve different problems. Thispaper surveys existing literature on the potential of using supervised classical machine learning techniques, such asK-Nearest Neigbour, Support Vector Machines, Naive Bayes and Random Forest algorithms, in performing livedigital forensics for different IoT configurations. There are also a number of challenges associated with the use ofmachine learning techniques, as discussed in this paper.

    Ladda ner fulltext (pdf)
    fulltext
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf