Nanodisc films are a promising approach to study the equilibrium conformation of membrane bound proteins in native-like environment. Here we compare nanodisc formation for NADPH-dependent cytochrome P450 oxidoreductase (POR) using two different scaffold proteins, MSP1D1 and MSP1E3D1. Despite the increased stability of POR loaded MSP1E3D1 based nanodiscs in comparison to MSP1D1 based nanodiscs, neutron reflection at the silicon–solution interface showed that POR loaded MSP1E3D1 based nanodisc films had poor surface coverage. This was the case, even when incubation was carried out under conditions that typically gave high coverage for empty nanodiscs. The low surface coverage affects the embedded POR coverage in the nanodisc film and limits the structural information that can be extracted from membrane bound proteins within them. Thus, nanodisc reconstitution on the smaller scaffold proteins is necessary for structural studies of membrane bound proteins in nanodisc films.
For several surfactant and lipid systems, it is crucial to understand how hydration influences the physical and chemical properties. When humidity changes, it affects the degree of hydration by adding or removing water molecules. In many cases, this process induces transitions between liquid crystalline phases. This phenomenon is of general interest for numerous applications simply because of the fact that humidity variations are ubiquitous. Of particular interest are hydration-induced phase transitions in amphiphilic films, which in many cases appear as the frontier toward a vapor phase with changing humidity. Considering this, it is important to characterize the film thickness needed for the formation of 3D liquid crystalline phases and the lyotropic phase behavior of this kind of film. In this work, we study this issue by employing a recently developed method based on the humidity scanning quartz crystal microbalance with dissipation monitoring (HS QCM-D), which enables continuous scanning of the film hydration. We investigate five surfactants films (DDAO, DTAC, CTAC, SDS, and n-octyl beta-D-glucoside) and one lipid film (monoolein) and show that HS QCM-D enables the fast characterization of hydration-induced phase transitions with small samples. Film thicknesses range from tens to hundreds of nanometers, and clear phase transitions are observed in all cases. It is shown that phase transitions in films occur at the same water activities as for corresponding bulk samples. This allows us to conclude that surfactant and lipid films, with a thickness of as low as 50 nm, are in fact assembled as 3D-structured liquid crystalline phases. Furthermore, liquid crystalline phases of surfactant films show liquidlike behavior, which decreases the accuracy of the absorbed water mass measurement. On the other hand, the monoolein lipid forms more rigid liquid crystalline films, allowing for an accurate determination of the water sorption isotherm, which is also true for the sorption isotherms corresponding to the solid surfactant phases.
Ellipsometry was used to determine the adsorbed layer thickness (d) and the surface excess (adsorbed amount, Γ) of a nonionic diblock copolymer, E106B16, of poly(ethylene oxide) (E) and poly(butylene oxide) (B) at the air−water interface. The results were obtained (i) by the conventional ellipsometric evaluation procedure using the change of both ellipsometric angles Ψ and Δ and (ii) by using the change of Δ only and assuming values of the layer thickness. It was demonstrated that the calculated surface excesses from the different methods were in close agreement, independent of the evaluation procedure, with a plateau adsorption of about 2.5 mg/m2 (400 Å2/molecule). Furthermore, the amount of E106B16 adsorbed at the air−water interface was found to be almost identical to that adsorbed from aqueous solution onto a hydrophobic solid surface. In addition, the possibility to use combined measurements with H2O or D2O as substrates to calculate values of d and Γ was investigated and discussed. We also briefly discuss within which limits the Gibbs equation can be used to determine the surface excess of polydisperse block copolymers.
The macroscopic phase behavior and other physicochemical properties of dilute aqueous mixtures of DNA and the cationic surfactant hexadecyltrimethylammounium bromide (CTAB), DNA and the polyamine spermine, or DNA, CTAB, and (2-hydroxypropyl)-β-cyclodextrin (2HPβCD) were investigated. When DNA is mixed with CTAB we found, with increasing surfactant concentration, (1) free DNA coexisting with surfactant unimers, (2) free DNA coexisting with aggregates of condensed DNA and CTAB, (3) a miscibility gap where macroscopic phase separation is observed, and (4) positively overcharged aggregates of condensed DNA and CTAB. The presence of a clear solution beyond the miscibility gap cannot be ascribed to self-screening by the charges from the DNA and/or the surfactant; instead, hydrophobic interactions among the surfactants are instrumental for the observed behavior. It is difficult to judge whether the overcharged mixed aggregates represent an equilibrium situation or not. If the excess surfactant was not initially present, but added to a preformed precipitate, redissolution was, in consistency with previous reports, not observed; thus, kinetic effects have major influence on the behavior. Mixtures of DNA and spermine also displayed a miscibility gap; however, positively overcharged aggregates were not identified, and redissolution with excess spermine can be explained by electrostatics. When 2HPβCD was added to a DNA–CTAB precipitate, redissolution was observed, and when it was added to the overcharged aggregates, the behavior was essentially a reversal of that of the DNA–CTAB system. This is attributed to an effectively quantitative formation of 1:1 2HPβCD–surfactant inclusion complexes, which results in a gradual decrease in the concentration of effectively available surfactant with increasing 2HPβCD concentration.
Controlling the interfacial behavior and properties of lipid liquid crystalline nanoparticles (LCNPs) at surfaces is essential for their application for preparing functional surface coatings as well as understanding some aspects of their properties as drug delivery vehicles. Here we have studied a LCNP system formed by mixing soy phosphatidylcholine (SPC), forming liquid crystalline lamellar structures in excess water, and glycerol dioleate (GDO), forming reversed structures, dispersed into nanoparticle with the surfactant polysorbate 80 (P80) as stabilizer. LCNP particle properties were controlled by using different ratios of the lipid building blocks as well as different concentrations of the surfactant P80. The LCNP size, internal structure, morphology, and charge were characterized by dynamic light scattering (DLS), synchrotron small-ange X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and zeta potential measurements, respectively. With increasing SPC to GDO ratio in the interval from 35:65 to 60:40, the bulk lipid phase structure goes from reversed cubic micellar phase with Fd3m space group to reversed hexagonal phase. Adding P80 results in a successive shift toward more disorganized lamellar type of structures. This is also seen from cryo-TEM images for the LCNPs, where higher P80 ratios results in more extended lamellar layers surrounding the inner, more dense, lipid-rich particle core with nonlamellar structure. When put in contact with a solid silica surface, the LCNPs adsorb to form multilayer structures with a surface excess and thickness values that increase strongly with the content of P80 and decreases with increasing SPC:GDO ratio. This is reflected in both the adsorption rate and steady-state values, indicating that the driving force for adsorption is largely governed by attractive interactions between poly(ethylene oxide) (PEO) units of the P80 stabilizer and the silica surface. On cationic surface, i.e., silica modified with 3-aminopropltriethoxysilane (APTES), the slightly negatively charged LCNPs give rise to a very significant adsorption, which is relatively independent of LCNP composition. Finally, the dynamic thickness measurements indicate that direct adsorption of intact particles occurred on the cationic surface, while a slow buildup of the layer thickness with time is seen for the weakly interacting systems.
Material scientists are in need of experimental techniques that facilitate a quantitative mechanical characterization of mesoscale materials and, therefore, their rational design. An example is that of thin organic films, as their performance often relates to their ability to withstand use without damage. The mechanical characterization of thin films has benefited from the emergence of the atomic force microscope (AFM). In this regard, it is of relevance that most soft materials are not elastic but viscoelastic instead. While most AFM operation modes and analysis procedures are suitable for elasticity studies, the use of AFM for quantitative viscoelastic characterizations is still a challenge. This is now an emerging topic due to recent developments in contact resonance AFM. The aim of this work was to further explore the potential of this technique by investigating its sensitivity to viscoelastic changes induced by environmental parameters, specifically humidity. Here, we show that by means of this experimental approach, it was possible to quantitatively monitor the influence of humidity on the viscoelasticity of two different thin and hydrophobic polyurethane coatings representative of those typically used to protect materials from processes like weathering and wear. The technique was sensitive even to the transition between the antiplasticizing and plasticizing effects of ambient humidity. Moreover, we showed that this was possible without the need of externally exciting the AFM cantilever or the sample, i.e., just by monitoring the Brownian motion of cantilevers, which significantly facilitates the implementation of this technique in any AFM setup.
Lipidation of proteins is used in the pharma- ceutical field to increase the therapeutic efficacy of proteins. In this study, we investigate the effect of a 14-carbon fatty acid modification on the adsorption behavior of human insulin to a hydrophobic solid surface and the subsequent fibrillation development under highly acidic conditions and elevated temperature by comparing to the fibrillation of human insulin. At these stressed conditions, the lipid modification accelerates the rate of fibrillation in bulk solution. With the use of several complementary surface-sensitive techniques, including quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and neutron reflectivity (NR), we show that there are two levels of structurally different protein organization at a hydrophobic surface for both human insulin and the lipidated analogue: a dense protein layer formed within minutes on the surface and a diffuse outer layer of fibrillar structures which took hours to form. The two layers may only be weakly connected, and proteins from both layers are able to desorb from the surface. The lipid modification increases the protein surface coverage and the thickness of both layer organizations. Upon lipidation not only the fibrillation extent but also the morphology of the fibrillar structures changes from fibril clusters on the surface to a more homogeneous network of fibrils covering the entire hydrophobic surface.
Water sorption calorimetry has been used for characterization of 2D hexagonally ordered mesoporous silica SBA-15. Experimental data on water sorption isotherm, the enthalpy, and the entropy of hydration of SBA-15 are presented. The results were compared with previously published results on MCM-41 obtained using the same technique. The water sorption isotherm of SBA-15 consists of four regimes, while the sorption isotherm of MCM-41 consists only of three. The extra regime in the water sorption isotherm for SBA-15 arises from filling of intrawall pores, that are present in SBA-15 but absent in MCM-41. The water sorption isotherms of the two types of mesoporous silica were analyzed using the Barrett−Joyner−Halenda approach. For the BJH analysis, t-curves of silica with different degrees of hydroxylation were proposed. Comparison of water and nitrogen t-curves shows that, independent of hydroxylation of silica surface, the adsorbed film of water is much thinner than the adsorbed film of nitrogen at similar relative pressures. This fact decreases the uncertainty of the assessment of porosity with water sorption originated from variations in surface properties. The pore size distribution of SBA-15 calculated with BJH treatment of water sorption data is in good agreement with nitrogen NLDFT results on the same material.
Water sorption isotherms of proteins are usually interpreted with such models as BET or GAB that imply the formation of multilayers at solid-gas interface. However, this approach is not applicable to globular proteins such as humid lysozyme where a solid-gas interface does not exist. Another popular approach is the D’Arcy-Watt model, where besides the formation of multilayers the heterogeneity of energies of sorption sites of proteins is taken into account. Here we present sorption calorimetric data on the hydration of lysozyme that confirms the existence of the heterogeneity. The magnitude of the heterogeneity is, however, lower than one can expect on the basis of the existence of a solid-gas interface. Moreover, the calorimetric data show a strong enthalpy-entropy compensation that leads to almost constant effective free energy of hydration in the activity range normally used for fitting the data to sorption models. This allows the use of the Langmuir equation for the fitting of the initial part of the sorption isotherm of lysozyme. Assuming the formation of a monolayer of water at the protein-protein interface, one can estimate the size of the lysozyme molecules from the sorption isotherm. The result of this estimation is in good agreement with the structural data on lysozyme, which supports the presented approach.
We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tm by neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.
The structural and mechanical properties of thin films generated from two types of mucins, namely, bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM) in aqueous environment were investigated with several bulk and surface analytical techniques. Both mucins generated hydrated films on hydrophobic polydimethylsiloxane (PDMS) surfaces from spontaneous adsorption arising from their amphiphilic characteristic. However, BSM formed more elastic films than PGM at neutral pH condition. This structural difference was manifested from the initial film formation processes to the responses to shear stresses applied to the films. Acidification of environmental pH led to strengthening the elastic character of BSM films with increased adsorbed mass, whereas an opposite trend was observed for PGM films. We propose that this contrast originates from that negatively charged motifs are present for both the central and terminal regions of BSM molecule, whereas a similar magnitude of negative charges is localized at the termini of PGM molecule. Given that hydrophobic motifs acting as an anchor are also localized in the terminal region, electrostatic repulsion between anchoring units of PGM molecules on a nonpolar PDMS surface leads to weakening of the mechanical integrity of the films.
Two blue multicopper oxidases (MCOs) (viz. Trametes hirsuta laccase (ThLc) and Myrothecium verrucaria bilirubin oxidase (MvBOx)) were immobilized on bare polycrystalline gold (Au) surfaces by direct adsorption from both dilute and concentrated enzyme solutions. The adsorption was studied in situ by means of null ellipsometry. Moreover, both enzyme-modified and bare Au electrodes were investigated in detail by atomic force microscopy (AFM) as well as electrochemically. When adsorbed from dilute solutions (0.125 and 0.25 mg mL–1 in the cases of ThLc and MvBOx, respectively), the amounts of enzyme per unit area were determined to be ca. 1.7 and 4.8 pmol cm–2, whereas the protein film thicknesses were determined to be 29 and 30 Å for ThLc and MvBOx, respectively. A well-pronounced bioelectrocatalytic reduction of molecular oxygen (O2) was observed on MvBOx/Au biocathodes, whereas this was not the case for ThLc-modified Au electrodes (i.e., adsorbed ThLc was catalytically inactive). The initially observed apparent kcatapp values for adsorbed MvBOx and the enzyme in solution were found to be very close to each other (viz. 54 and 58 s–1, respectively (pH 7.4, 25 °C)). However, after 3 h of operation of MvBOx/Au biocathodes, kcatapp dropped to 23 s–1. On the basis of the experimental results, conformational changes of the enzymes (in all likelihood, their flattening on the Au surface) were suggested to explain the deactivation of MCOs on the bare Au electrodes.
Mesoporous silica SBA-15 was modified in a three-step process to obtain a material with poly-N-isopropylacrylamide (PNIPAAM) grafted onto the inner pore surface. Water sorption calorimetry was implemented to characterize the materials obtained after each step regarding the porosity and surface properties. The modification process was carried out by (i) increasing the number of surface silanol groups, (ii) grafting 1-(trichlorosilyl)-2-(m-/p-(chloromethylphenyl) ethane, acting as an anchor for (iii) the polymerization of N-isopropylacrylamide. Water sorption isotherms and the enthalpy of hydration are presented. Pore size distributions were calculated on the basis of the water sorption isotherms by applying the BJH model. Complementary measurements with nitrogen sorption and small-angle X-ray diffraction are presented. The increase in the number of surface silanol groups occurs mainly in the intrawall pores, the anchor is mainly located in the intrawall pores, and the intrawall pore volume is absent after the surface grafting of PNIPAAM. Hence, PNIPAAM seals off the intrawall pores. Water sorption isotherms directly detect the presence of intrawall porosity. Pore size distributions can be calculated from the isotherms. Furthermore, the technique provides information regarding the hydration capability (i.e., wettability of different chemical surfaces) and thermodynamic information.
The molecular architecture of sugar-based surfactants strongly affects their self-assembled structure, i.e., the type of micelles they form, which in turn controls both the dynamics and rheological properties of the system. Here, we report the segmental and mesoscopic structure and dynamics of a series of C16 maltosides with differences in the anomeric configuration and degree of tail unsaturation. Neutron spin-echo measurements showed that the segmental dynamics can be modeled as a one-dimensional array of segments where the dynamics increase with inefficient monomer packing. The network dynamics as characterized by dynamic light scattering show different relaxation modes that can be associated with the micelle structure. Hindered dynamics are observed for arrested networks of worm-like micelles, connected to their shear-thinning rheology, while nonentangled diffusing rods relate to Newtonian rheological behavior. While the design of novel surfactants with controlled properties poses a challenge for synthetic chemistry, we demonstrate how simple variations in the monomer structure can significantly influence the behavior of surfactants.
We present a method to study the strength of layers of biological molecules in liquid medium. The method is based on the Friction Force Spectroscopy operation mode of the Atomic Force Microscope. It works by scratching the sample surface at different applied loads while registering the evolution of the sample topography and of the friction between probe and sample. Results are presented for BSA and β-casein monolayers on hydrophobic surfaces. We show how the simultaneous monitoring of topography and friction allows detecting differences not only between the strength of both types of layers, but also between the lateral diffusion of the proteins within these layers. Specifically, β-casein is shown to form stronger layers than BSA. The yield strengths calculated for both of these systems are in the range 50-70 MPa. Moreover, while no lateral diffusion is observed for BSA, we show that β-casein diffuses along the hydrophobic substrates at a rate higher than the scan velocity of the tip (16 μm s(-1) in our case).
In this work, we employ atomic force microscopy based friction force spectroscopy to study the strength and structure of salivary films. Specifically, films formed on model hydrophobic (methylated silica) and hydrophilic (clean silica) substrata have been studied in water at pHs in the range 3.3–7. Results reveal that films formed on both types of substrata can be described in terms of two different fractions, with only one of them being able to diffuse along the underlying substrata. We also show how the protective function of the films is reduced when the pH of the surrounding medium is lowered. Specifically, lowering of pH causes desorption of some components of the films formed on hydrophobic methylated surfaces, leading to weaker layers. In contrast, at low pHs, saliva no longer forms a layer on hydrophilic silica surfaces. Instead, an inhomogeneous distribution of amorphous aggregates is observed. Our data also suggest that hydrophobic materials in the oral cavity might be more easily cleaned from adsorbed salivary films. Finally, reproducible differences are observed in results from experiments on films from different individuals, validating the technique as a tool for clinical diagnosis of the resistance to erosion of salivary films.
Friction force spectroscopy (FFS) has been applied to study the tribological properties of β- and κ-casein layers on hydrophobic substrates in aqueous solutions. Nanometer-sized imaging tips were employed. This allowed exerting and determining the high pressures needed to remove the layers, and registering the topographic evolution during this process. Both β- and κ-casein layers showed similar and not particularly high initial frictional responses (friction coefficient of ~1 when measure with a silicon nitride tip). The pressures needed to remove the layers were of the same order of magnitude for both proteins, ~1e8 Pa, but slightly higher for those composed of β-casein. The technique has also shown to be useful in studying the two-dimensional lateral diffusion of the proteins and the wear on the layers they form.
We demonstrate the ability to tune the formation of extended structures in films of poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide at the air/water interface through control over the charge/structure of aggregates as well as the ionic strength of the subphase. Our methodology to prepare loaded polyelectrolyte/surfactant films from self-assembled liquid crystalline aggregates exploits their fast dissociation and Marangoni spreading of material upon contact with an aqueous subphase. This process is proposed as a potential new route to prepare cheap biocompatible films for transfer applications. We show that films spread on water from Marangoni swollen aggregates of low/negative charge have 1:1 charge Spreading binding and can be compressed only to a monolayer, beyond which material is lost to the bulk. For films spread on water from compact aggregates of positive charge, however, extended structures of the two components are created upon spreading or upon compression of the film beyond a monolayer. The application of ellipsometry, Brewster angle microscopy, and neutron reflectometry as well as measurements of surface pressure isotherms allow us to reason that formation of extended structures is activated by aggregates embedded in the film. The situation upon spreading on 0.1 M NaCl is different as there is a high concentration of small ions that stabilize loops of the polyelectrolyte upon film compression, yet extended structures of both components are only transient. Analogy of the controlled formation of extended structures in fluid monolayers is made to reservoir dynamics in lung surfactant. The work opens up the possibility to control such film dynamics in related systems through the rational design of particles in the future.
We develop and combine a novel numerical model, within the Poisson−Boltzmann framework, with classical experimental titration techniques for mesoporous silica particles to study the charging behavior as both pH and the amount of monovalent salt are varied. One key finding is that these particles can be considered to have an effectively or apparent electroneutral inner core with an effectively charged rim. As a consequence, the total apparent charge of the particle is several orders of magnitude smaller than that of the bare silica charge, which accounts only for the charged silanol groups of the mesoporous silica particles and which has its major contribution from the interior. Hence, the interior dictates the mesoporous silicas’ bare charge while the rim its effective charge. We furthermore report density, charge, and accumulated charge profiles across the particle’s interface.
The lipid liquid crystalline sponge phase (1,3) has the advantages that it is a nanoscopically bicontinuous bilayer network able to accommodate large amounts of water and it is easy to Manipulate due to its fluidity. This paper reports on the detailed characterization of L3 phases with water channels large enough to encapsulate bioactive macromolecules such as proteins. The aqueous phase behavior of a novel lipid mixture system, consisting of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO50) was studied. In addition, sponge -like nanoparticles (NPs) stabilized by Polysorbate 80 (P80) were prepared based on the DGMO/GMO-50 system, and their structure was correlated with the phase behavior of the corresponding bulk system. These NPs were characterized by dynamic light scattering (DLS), angle X-ray scattering (SAXS) cryo-transmission electron microscopy (Cryo-TEM) and small angle X-ray scattering (SAXS) to determine their size, shape, and DGMO/GMO-50 ratio. In addition, the effect of P80 as stabilizer was investigated. We found that the NPs have aqueous pores with diameters up to 13 nm, similar to the ones in the bulk phase.
Cholesterol is an essential component of mammalian membranes and is known to induce a series of physicochemical changes in the lipid bilayer. Such changes include the formation of liquid-ordered phases with an increased thickness and a configurational order as compared to liquid-disordered phases. For saturated lipid membranes, cholesterol molecules localize close to the lipid head group-tail interface. However, the presence of polyunsaturated lipids was recently shown to promote relocation of cholesterol toward the inner interface between the two bilayer leaflets. Here, neutron reflection is used to study the location of cholesterol (both non-deuterated and per-deuterated versions are used) within supported lipid bilayers composed of a natural mixture of phosphatidylcholine (PC). The lipids were produced in a genetically modified strain of Escherichia coli and grown under specific deuterated conditions to give an overall neutron scattering length density (which depends on the level of deuteration) of the lipids matching that of D2O. The combination of solvent contrast variation method with specific deuteration shows that cholesterol is located closer to the lipid head group-tail interface in this natural PC extract rather than in the center of the core of the bilayer as seen for very thin or polyunsaturated membranes.
Lipid bilayers, forming the outer barrier of cells, display a wide array of proteins and carbohydrates for modulating interfacial biological interactions. Formed by the spontaneous self-assembly of lipid molecules, these bilayers feature liquid crystalline order, while retaining a high degree of lateral mobility. Studies of these dynamic phenomena have been hampered by the fragility and instability of corresponding biomimetic cell membrane models. Here, we present the construct of a series of oligoethylene glycol-terminated reversible self-assembled monolayers (rSAMs) featuring lipid-bilayer-like fluidity, while retaining air and protein stability and resistance. These robust and ordered layers were prepared by simply immersing a carboxylic acid terminated self-assembled monolayer into 5-50 mu M aqueous omega-(4-ethylene glycol-phenoxy)-alpha-(4-amidinophenoxy)decane solutions. It is anticipated that this new class of robust and fluidic two-dimensional biomimetic surfaces will impact the design of rugged cell surface mimics and high-performance biosensors.
Glycans at the surface of cellular membranes modulate biological activity via multivalent association with extracellular messengers. The lack of tuneable simplified models mimicking this dynamic environment complicates basic studies of these phenomena. We here present a series of mixed reversible self-assembled monolayers (rSAMs) that addresses this deficiency. Mixed rSAMs were prepared in water by simple immersion of a negatively charged surface in a mixture of sialic acid- and hydroxy-terminated benzamidine amphiphiles. Surface compositions derived from infrared reflection-absorption spectroscopy (IRAS) and film thickness information (atomic force microscopy, ellipsometry) suggest the latter to be statistically incorporated in the monolayer. These surfaces' affinity for the lectin hemagglutinin revealed a strong dependence of the affinity on the presentation, density, and mobility of the sialic acid ligands. Hence, a spacer length of 4 ethylene glycol and a surface density of 15% resulted in a dissociation constant K-d,K-multi of 1.3 x 10(-13) M, on par with the best di- or tri-saccharide-based binders reported to date, whereas a density of 20% demonstrated complete resistance to hemagglutinin binding. These results correlated with ligand mobility measured by fluorescence recovery after photobleaching which showed a dramatic drop in the same interval. The results have a direct bearing on biological cell surface multivalent recognition involving lipid bilayers and may guide the design of model surfaces and sensors for both fundamental and applied studies.