Computational systems are becoming increasingly smart and automated. Artificial intelligence (AI) systems perceive things in the world, produce content, make decisions for and about us, and serve as emotional companions. From music recommendations to higher-stakes scenarios such as policy decisions, drone-based warfare, and automated driving directions, automated systems affect us all.
But researchers and other experts are asking, How well do we understand this alien intelligence? If even AI developers don’t fully understand how their own neural networks make decisions, what chance does the public have to understand AI outcomes? For example, AI systems decide whether a person should get a loan; so what should—what can—that person understand about how the decision was made? And if we can’t understand it, how can any of us trust AI?
The emerging area of explainable AI (XAI) addresses these issues by helping to disclose how an AI system arrives at its outcomes. But the nature of the disclosure depends in part on the audience, or who needs to understand the AI. A car, for example, can send warnings to consumers (“Tire Pressure Low”) and also send highly technical diagnostic codes that only trained mechanics can understand. Explanation modality is also important to consider. Some people might prefer spoken explanations compared to visual ones. Physical forms afford natural interaction with some smart systems, like vehicles and vacuums, but whether tangible interaction can support AI explanation has not yet been explored.
In the summer of 2020, a group of multidisciplinary researchers collaborated on a studio proposal for the 2021 ACM Tangible Embodied and Embedded (TEI) conference. The basic idea was to link conversations about tangible and embodied interaction and product semantics to XAI. Here, we first describe the background and motivation for the workshop and then report on its outcomes and offer some discussion points.