We study the problem of determining the complexity of the lower envelope of a collection of n geometric objects. For collections of rays; unit length line segments; and collections of unit squares to which we apply at most two transformations from translation, rotation, and scaling, we prove a complexity of Θ(n). If all three transformations are applied to unit squares, then we show the complexity becomes Θ(nα(n)), where α(n) is the slowly growing inverse of Ackermann’s function.