Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A non-invasive 25-Gene PLNM-Score urine test for detection of prostate cancer pelvic lymph node metastasis
Jinan Univ, Shenzhen Peoples Hosp, Clin Med Coll 2, Dept Urol, Shenzhen, Peoples R China.;Shenzhen Peoples Hosp, Shenzhen Clin Res Ctr Geriatr, Shenzhen, Peoples R China.;Shenzhen Urol Minimally Invas Engn Ctr, Shenzhen, Peoples R China..
Chinese Peoples Liberat Army PLA Gen Hosp, Med Ctr 3, Dept Urol, Beijing, Peoples R China..
Olympia Diagnost Inc, Sunnyvale, CA USA..
Guangzhou Med Univ, Affiliated Hosp 1, Dept Urol, Guangzhou, Peoples R China..ORCID iD: 0000-0002-2411-8164
Show others and affiliations
2024 (English)In: Prostate Cancer and Prostatic Diseases, ISSN 1365-7852, E-ISSN 1476-5608Article in journal (Refereed) Epub ahead of print
Abstract [en]

Background: Prostate cancer patients with pelvic lymph node metastasis (PLNM) have poor prognosis. Based on EAU guidelines, patients with >5% risk of PLNM by nomograms often receive pelvic lymph node dissection (PLND) during prostatectomy. However, nomograms have limited accuracy, so large numbers of false positive patients receive unnecessary surgery with potentially serious side effects. It is important to accurately identify PLNM, yet current tests, including imaging tools are inaccurate. Therefore, we intended to develop a gene expression-based algorithm for detecting PLNM. Methods: An advanced random forest machine learning algorithm screening was conducted to develop a classifier for identifying PLNM using urine samples collected from a multi-center retrospective cohort (n = 413) as training set and validated in an independent multi-center prospective cohort (n = 243). Univariate and multivariate discriminant analyses were performed to measure the ability of the algorithm classifier to detect PLNM and compare it with the Memorial Sloan Kettering Cancer Center (MSKCC) nomogram score. Results: An algorithm named 25 G PLNM-Score was developed and found to accurately distinguish PLNM and non-PLNM with AUC of 0.93 (95% CI: 0.85-1.01) and 0.93 (95% CI: 0.87-0.99) in the retrospective and prospective urine cohorts respectively. Kaplan-Meier plots showed large and significant difference in biochemical recurrence-free survival and distant metastasis-free survival in the patients stratified by the 25 G PLNM-Score (log rank P < 0.001 and P < 0.0001, respectively). It spared 96% and 80% of unnecessary PLND with only 0.51% and 1% of PLNM missing in the retrospective and prospective cohorts respectively. In contrast, the MSKCC score only spared 15% of PLND with 0% of PLNM missing. Conclusions: The novel 25 G PLNM-Score is the first highly accurate and non-invasive machine learning algorithm-based urine test to identify PLNM before PLND, with potential clinical benefits of avoiding unnecessary PLND and improving treatment decision-making.

Place, publisher, year, edition, pages
Nature Publishing Group, 2024.
National Category
Cancer and Oncology
Identifiers
URN: urn:nbn:se:mau:diva-66111DOI: 10.1038/s41391-023-00758-zISI: 001156530700001PubMedID: 38308042Scopus ID: 2-s2.0-85184212873OAI: oai:DiVA.org:mau-66111DiVA, id: diva2:1840789
Available from: 2024-02-26 Created: 2024-02-26 Last updated: 2024-03-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Persson, Jenny L.

Search in DiVA

By author/editor
Gu, DiPersson, Jenny L.
By organisation
Department of Biomedical Science (BMV)
In the same journal
Prostate Cancer and Prostatic Diseases
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf