Malmö University Publications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Linking data collected from mobile phones withsymptoms level in Parkinson’s Disease: Dataexploration of the mPower study
Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).ORCID iD: 0000-0002-7102-083X
Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).ORCID iD: 0000-0002-9203-1124
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).ORCID iD: 0000-0002-4261-281X
2022 (English)In: Pervasive Computing Technologies for Healthcare: 16th EAI International Conference, PervasiveHealth 2022, Thessaloniki, Greece, December 12-14, 2022, Proceedings / [ed] Tsanas, Athanasios; Triantafyllidis, Andreas, Cham: Springer, 2022Conference paper, Published paper (Refereed)
Abstract [en]

Advancements in technology, such as smartphones and wearabledevices, can be used for collecting movement data through embeddedsensors. This paper focuses on linking Parkinson’s Disease severitywith data collected from mobile phones in the mPower study. As referencefor symptoms’ severity, we use the answers provided to part 2 ofthe standard MDS-UPDRS scale. As input variables, we use the featurescomputed within mPower from the raw data collected during 4 phonebasedactivities: walking, rest, voice and finger tapping. The features arefiltered in order to remove unreliable datapoints and associated to referencevalues. After pre-processing, 5 Machine Learning algorithms areapplied for predictive analysis. We show that, notwithstanding the noisedue to the data being collected in an uncontrolled manner, the regressedsymptom levels are moderately to strongly correlated with the actualvalues (highest Pearson’s correlation = 0.6). However, the high differencebetween the values also implies that the regressed values can not beconsidered as a substitute for a conventional clinical assessment (lowestmean absolute error = 5.4).

Place, publisher, year, edition, pages
Cham: Springer, 2022.
Series
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, ISSN 1867-8211
Keywords [en]
mobile health, Parkinson’s disease, mPower data
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:mau:diva-58646DOI: 10.1007/978-3-031-34586-9_29Scopus ID: 2-s2.0-85164108273ISBN: 978-3-031-34585-2 (print)ISBN: 978-3-031-34586-9 (electronic)OAI: oai:DiVA.org:mau-58646DiVA, id: diva2:1743257
Conference
16th EAI International Conference, Pervasive Health 2022, Thessaloniki, Greece, December 12-14, 2022
Available from: 2023-03-14 Created: 2023-03-14 Last updated: 2024-10-30Bibliographically approved
In thesis
1. Machine Learning-Driven Analysis of Sensor Data for Objective Assessment of Parkinson's Disease Motor Symptoms in Home Environments
Open this publication in new window or tab >>Machine Learning-Driven Analysis of Sensor Data for Objective Assessment of Parkinson's Disease Motor Symptoms in Home Environments
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Parkinson’s disease (PD) is a progressive neurodegenerative brain disorder that signifi- cantly impacts quality of life for those who are affected. It is a rapidly growing condition affecting millions of people worldwide, where treatments focus on managing symptoms and slowing the degenerative process, as there are no validated treatments that can stop its progression or preemptively prevent it. Effective management of the disease relies on accurate and timely assessment of symptoms based on clinical ratings, traditionally performed through clinical examinations using the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). However, in-clinic assessments are infrequent and may not capture the full spectrum of symptom fluctuations in daily life. While existing literature has focused on diagnosing PD, the current understanding falls short in terms of objectively quantifying its symptoms in daily-living conditions.

Following a design science research methodology, this thesis responds to this research gap by exploring the feasibility of using smartphones to quantify PD symptoms in a real- world, at-home setting. The research presents a cross-platform mobile application de- veloped for data collection from PD patients with the aim to identify promising system components and data types for capturing PD symptoms. Using data mining and machine learning techniques, the research explores if it is feasible to estimate the MDS-UPDRS scale based on objective measurements from smartphone-collected data. Additionally, it investigates the usability of the proposed mobile application for PD patients. By de- veloping and validating a cross-platform mobile application for symptom capturing, this thesis contributes both in terms of research results communicated in the associated peer- reviewed papers, and by providing an open source based app which makes PD symptom assessments more accessible, objective, and patient-centric.

Place, publisher, year, edition, pages
Malmö: Malmö University Press, 2024. p. 47
Series
Studies in Computer Science ; 27
National Category
Computer Sciences
Identifiers
urn:nbn:se:mau:diva-71851 (URN)10.24834/isbn.9789178774913 (DOI)9789178774906 (ISBN)9789178774913 (ISBN)
Presentation
2024-10-16, Niagara, hörsal B2, Nordenskiöldsgatan 1, Malmö, 13:00 (English)
Opponent
Supervisors
Note

Note: The papers are not included in the fulltext online.

Paper V in dissertation as manuscript.

Available from: 2024-11-04 Created: 2024-10-30 Last updated: 2024-11-04Bibliographically approved

Open Access in DiVA

fulltext(276 kB)46 downloads
File information
File name FULLTEXT01.pdfFile size 276 kBChecksum SHA-512
602a4bef51fccee736cb283b7195b1effb2d767599f7f516baa079ab343c44644768320fa988a6ff52d6e10c2f47a307c0cd8c4553d99f83ffcfd654152c3cd5
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Ymeri, GentSalvi, DarioOlsson, Carl Magnus

Search in DiVA

By author/editor
Ymeri, GentSalvi, DarioOlsson, Carl Magnus
By organisation
Internet of Things and People (IOTAP)Department of Computer Science and Media Technology (DVMT)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 46 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 317 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf