Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Active Learning and Machine Teaching for Online Learning: A Study of Attention and Labelling Cost
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).ORCID iD: 0000-0002-3155-8408
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).ORCID iD: 0000-0003-0998-6585
Malmö University, Internet of Things and People (IOTAP). Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).ORCID iD: 0000-0002-9471-8405
2021 (English)In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Institute of Electrical and Electronics Engineers (IEEE), 2021Conference paper, Published paper (Refereed)
Abstract [en]

Interactive Machine Learning (ML) has the potential to lower the manual labelling effort needed, as well as increase classification performance by incorporating a human-in-the loop component. However, the assumptions made regarding the interactive behaviour of the human in experiments are often not realistic. Active learning typically treats the human as a passive, but always correct, participant. Machine teaching provides a more proactive role for the human, but generally assumes that the human is constantly monitoring the learning process. In this paper, we present an interactive online framework and perform experiments to compare active learning, machine teaching and combined approaches. We study not only the classification performance, but also the effort (to label samples) and attention (to monitor the ML system) required of the human. Results from experiments show that a combined approach generally performs better with less effort compared to active learning and machine teaching. With regards to attention, the best performing strategy varied depending on the problem setup.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021.
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:mau:diva-51515DOI: 10.1109/icmla52953.2021.00197ISI: 000779208200189Scopus ID: 2-s2.0-85125866078ISBN: 978-1-6654-4337-1 (electronic)ISBN: 978-1-6654-4338-8 (print)OAI: oai:DiVA.org:mau-51515DiVA, id: diva2:1658975
Conference
2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13-16 Dec. 2021
Funder
Knowledge FoundationAvailable from: 2022-05-18 Created: 2022-05-18 Last updated: 2023-09-05Bibliographically approved
In thesis
1. Interactive Online Machine Learning
Open this publication in new window or tab >>Interactive Online Machine Learning
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

With the Internet of Things paradigm, the data generated by the rapidly increasing number of connected devices lead to new possibilities, such as using machine learning for activity recognition in smart environments. However, it also introduces several challenges. The sensors of different devices might be mobile and of different types, i.e. there is a need to handle streaming data from a dynamic and heterogeneous set of sensors. In machine learning, the performance is often linked to the availability and quality of annotated data. Annotating data is in general costly, but it can be even more challenging if there is not any, or a very small amount of, annotated data to train the model on at the start of learning. To handle these issues, we implement interactive and adaptive systems. By including human-in-the-loop, which we refer to as interactive machine learning, the input from users can be utilized to build the model. The type of input used in interactive machine learning is typically annotations of the data, i.e. correctly labelled data points. Generally, it is assumed that the user always provides correct labels in accordance with the chosen interactive learning strategy. In many real-world applications these assumptions are not realistic however, as users might provide incorrect labels or not provide labels at all in line with the chosen strategy.

In this thesis we explore which interactive learning strategy types are possible in the given scenario and how they affect performance, as well as the effect of machine learning algorithms on the performance. We also study how a user who is not always reliable, i.e. who does not always provide a correct label when expected to, can affect performance. We propose a taxonomy of interactive online machine learning strategies and test how the different strategies affect performance through experiments on multiple datasets. Simulated experiments are compared to experiments with human participants, to verify the results. The findings show that the overall best performing interactive learning strategy is one where the user provides labels when current estimations are incorrect, but that the best performing machine learning algorithm depends on the problem scenario. The experiments also show that a decreased reliability of the user leads to decreased performance, especially when there is a limited amount of labelled data. The robustness of the machine learning algorithms differs, where e.g. Naïve Bayes classifier is better at handling a lower reliability of the user. We also present a systematic literature review on machine teaching, a subfield of interactive machine learning where the human is proactive in the interaction. The study shows that the area of machine teaching is rapidly evolving with an increased number of publications in recent years. However, as it is still maturing, there exists several open challenges that would benefit from further exploration, e.g. how human factors can affect performance.

Place, publisher, year, edition, pages
Malmö: Malmö universitet, 2022. p. 209
Series
Studies in Computer Science ; 18
Keywords
Interactive Machine Learning, Active Learning, Machine Teaching, Online Learning
National Category
Computer Sciences
Identifiers
urn:nbn:se:mau:diva-51987 (URN)10.24834/isbn.9789178772810 (DOI)978-91-7877-280-3 (ISBN)978-91-7877-281-0 (ISBN)
Public defence
2022-06-23, HS aula samt livestramas, Jan Waldenströms gata 25, Malmö, 10:00 (English)
Opponent
Supervisors
Note

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Malmö University's products or services. Internal or personal use of this material is permitted.

Paper VI and VII appear in dissertation as manuscripts.

Available from: 2022-06-03 Created: 2022-06-02 Last updated: 2023-09-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Tegen, AgnesDavidsson, PaulPersson, Jan A.

Search in DiVA

By author/editor
Tegen, AgnesDavidsson, PaulPersson, Jan A.
By organisation
Department of Computer Science and Media Technology (DVMT)Internet of Things and People (IOTAP)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 88 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf