Exponential Time Complexity of the Permanent and the Tutte PolynomialShow others and affiliations
2014 (English)In: ACM Transactions on Algorithms, ISSN 1549-6325, E-ISSN 1549-6333, Vol. 10, no 4, article id 21Article in journal (Refereed) Published
Abstract [en]
We show conditional lower bounds for well-studied #P-hard problems: -The number of satisfying assignments of a 2-CNF formula with n variables cannot be computed in time exp(o(n)), and the same is true for computing the number of all independent sets in an n-vertex graph. -The permanent of an n x n matrix with entries 0 and 1 cannot be computed in time exp(o(n)). -The Tutte polynomial of an n-vertex multigraph cannot be computed in time exp(o(n)) at most evaluation points (x, y) in the case of multigraphs, and it cannot be computed in time exp(o(n/poly log n)) in the case of simple graphs. Our lower bounds are relative to (variants of) the Exponential Time Hypothesis (ETH), which says that the satisfiability of n-variable 3-CNF formulas cannot be decided in time exp(o(n)). We relax this hypothesis by introducing its counting version #ETH; namely, that the satisfying assignments cannot be counted in time exp(o(n)). In order to use #ETH for our lower bounds, we transfer the sparsification lemma for d-CNF formulas to the counting setting.
Place, publisher, year, edition, pages
ACM Digital Library, 2014. Vol. 10, no 4, article id 21
Keywords [en]
Theory, Algorithms, Computational complexity, counting problems, Tutte polynomial, permanent, exponential time hypothesis
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:mau:diva-39265DOI: 10.1145/2635812ISI: 000343962200005Scopus ID: 2-s2.0-84906849708OAI: oai:DiVA.org:mau-39265DiVA, id: diva2:1519149
2021-01-182021-01-182024-02-12Bibliographically approved