Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Periodic Jacobi operator with finitely supported perturbations: The inverse resonance problem
Malmö högskola, School of Technology (TS).ORCID iD: 0000-0001-5094-8500
2012 (English)In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 252, no 3, p. 2823-2844Article in journal (Refereed) Published
Abstract [en]

We consider a periodic Jacobi operator H with finitely supported perturbations on Z. We solve the inverse resonance problem: we prove that the mapping from finitely supported perturbations to the scattering data, the inverse of the transmission coefficient and the Jost function on the right half-axis, is one-to-one and onto. We consider the problem of reconstruction of the scattering data from all eigenvalues, resonances and the set of zeros of R_(lambda) + 1, where R_ is the reflection coefficient. (C) 2011 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
Elsevier, 2012. Vol. 252, no 3, p. 2823-2844
Keywords [en]
Resonances, Inverse scattering, Jacobi operator, Periodic
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:mau:diva-39278DOI: 10.1016/j.jde.2011.09.034ISI: 000297833500034Scopus ID: 2-s2.0-83055186576OAI: oai:DiVA.org:mau-39278DiVA, id: diva2:1519148
Available from: 2021-01-18 Created: 2021-01-18 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Iantchenko, Alexei

Search in DiVA

By author/editor
Iantchenko, AlexeiKorotyaev, Evgeny
By organisation
School of Technology (TS)
In the same journal
Journal of Differential Equations
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf