Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analys av prediktiv precision av maskininlärningsalgoritmer
Malmö högskola, Faculty of Technology and Society (TS).
2017 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Maskininlärning (eng: Machine Learning) har på senare tid blivit ett populärt ämne. En fråga som många användare ställer sig är hur mycket data det behövs för att få ett så korrekt svar som möjligt. Detta arbete undersöker relationen mellan inlärningsdata, mängd såväl som struktur, och hur väl algoritmen presterar. Fyra olika typer av datamängder (Iris, Digits, Symmetriskt och Dubbelsymetriskt) studerades med hjälp av tre olika algoritmer (Support Vector Classifier, K-Nearest Neighbor och Decision Tree Classifier). Arbetet fastställer att alla tre algoritmers prestation förbättras vid större mängd inlärningsdata upp till en viss gräns, men att denna gräns är olika för varje algoritm. Datainstansernas struktur påverkar också algoritmernas prestation där dubbelsymmetri ger starkare prestation än enkelsymmetri.

Abstract [en]

In recent years Machine Learning has become a popular subject. A challange that many users face is choosing the correct amount of training data. This study researches the relationship between the amount and structure of training data and the accuracy of the algorithm. Four different datasets (Iris, Digits, Symmetry and Double symmetry) were used with three different algorithms (Support Vector Classifier, K-Nearest Neighbor and Decision Tree Classifier). This study concludes that all algorithms perform better with more training data up to a certain limit, which is different for each algorithm. The structure of the dataset also affects the performance, where double symmetry gives greater performance than simple symmetry.

Place, publisher, year, edition, pages
Malmö högskola/Teknik och samhälle , 2017. , p. 34
Keywords [sv]
machinelearning, Learning Curve, dataset structure, Symmetry
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mau:diva-20971Local ID: 23320OAI: oai:DiVA.org:mau-20971DiVA, id: diva2:1480854
Educational program
TS Datavetenskap och applikationsutveckling
Available from: 2020-10-27 Created: 2020-10-27 Last updated: 2022-06-27Bibliographically approved

Open Access in DiVA

fulltext(1087 kB)191 downloads
File information
File name FULLTEXT01.pdfFile size 1087 kBChecksum SHA-512
662f5dcd57cefe56d313cebdee6edd90c7a21815e81a041b83e98fd5bb7c015485a197568a96817114286ab9f04c08a0bf6e13d18a61d506471aa24a66e35920
Type fulltextMimetype application/pdf

By organisation
Faculty of Technology and Society (TS)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 191 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf