Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Maskin eller läkare? En studie om individens attityd till användning av vårdapplikationer med maskininlärning
Malmö University, Faculty of Technology and Society (TS).
Malmö University, Faculty of Technology and Society (TS).
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

I denna studie undersöks individers generella attityder till vårdapplikationer som använder maskininlärning. Datainsamlingen har skett genom både kvalitativa och kvantitativa metoder som kompletterar varandra. Metoderna innefattar en enkätundersökning och två fokusgrupper baserade på scenario-based design. Teorin är baserad på forskning inom digitaliseringen av vården, bland annat maskininlärning och mHealth, som ligger till grund och stödjer undersökningen. Även teori om attityder och förtroende till digitaliseringen av vården har underbyggt undersökningen. I slutsatsen framkommer det att det finns en korrelation mellan hög medvetenhet och positiv inställning när det kommer det användandet av vårdapplikationer med maskininlärning. Den generella attityden till att få en diagnos av maskininlärning är negativ då de flesta föredrar att få en diagnos förmedlad av en läkare. Studien indikerar på att detta kan bero på att patienterna söker empati från vården, vilket artificiell intelligens saknar. Förtroendet för en vårdapplikation grundar sig främst i ryktet om den men även i vilket företag eller organisation som ligger bakom. Studien indikerar på att individer är positivt inställda till att bidra med privat hälsodata till en vårdapplikation om det leder till förebyggande av sjukdom. Studien ger även en antydan på att det finns en rädsla kring var privata hälsodata hamnar när den har lämnats ut.

Abstract [en]

This study aims to research on individuals’ general attitudes towards healthcare applications that use machine learning. The data collection has taken place through both qualitative and quantitative methods as a complement to each other. The methods include a questionnaire survey, two focus groups based on scenario-based design. The theory is based on research in the digitalisation of healthcare, including machine learning and mHealth, which is based and supports the investigation. The theory of attitudes and confidence in the digitalisation of care also forms the basis for the study. The conclusion shows that there is a correlation between high awareness and positive attitude when it comes to the use of healthcare applications with machine learning. The general attitude towards a diagnosis from machine learning is negative since most people prefer to get a diagnosis mediated by a doctor. The study indicates that this may be because the patients seek empathy from the healthcare system, which artificial intelligence lacks of. Trust towards a healthcare application is based primarily on the reputation of it, but also in which company or organization that is behind it. The respondents in the survey are positive about contributing with their personal data to a healthcare application if it leads to a prevention of a disease. The study also gives an indication that there is a fear of what happens with private health data.

Place, publisher, year, edition, pages
Malmö universitet/Teknik och samhälle , 2019. , p. 65
Keywords [sv]
Machine learning, attitude, self-care, mHealth, health care applications
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mau:diva-20881Local ID: 29574OAI: oai:DiVA.org:mau-20881DiVA, id: diva2:1480764
Educational program
TS Produktionsledare - Media
Supervisors
Examiners
Available from: 2020-10-27 Created: 2020-10-27Bibliographically approved

Open Access in DiVA

fulltext(996 kB)93 downloads
File information
File name FULLTEXT01.pdfFile size 996 kBChecksum SHA-512
648a97190612e51fadc08f2d14bcd763d3d347e7bce3c5788f6c9b3cb1f73c64b05f0069ce06d9058306ac8f85773a953acb560be8516000a0e1c27fbf5c6764
Type fulltextMimetype application/pdf

By organisation
Faculty of Technology and Society (TS)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 93 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 238 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf