Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interpretable Superhuman Machine Learning Systems: An explorative study focusing on interpretability and detecting Unknown Knowns using GAN
Malmö University, Faculty of Technology and Society (TS).
Malmö University, Faculty of Technology and Society (TS).
2020 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

I en framtid där förutsägelser och beslut som tas av maskininlärningssystem överträffar människors förmåga behöver systemen att vara tolkbara för att vi skall kunna lita på och förstå dem. Vår studie utforskar världen av tolkbar maskininlärning genom att designa och undersöka artefakter. Vi genomför experiment för att utforska förklarbarhet, tolkbarhet samt tekniska utmaningar att skapa maskininlärningsmodeller för att identifiera liknande men unika objekt. Slutligen genomför vi ett användartest för att utvärdera toppmoderna förklaringsverktyg i ett direkt mänskligt sammanhang. Med insikter från dessa experiment diskuterar vi den potentiella framtiden för detta fält

Abstract [en]

In a future where predictions and decisions made by machine learning systems outperform humans we need the systems to be interpretable in order for us to trust and understand them. Our study explore the realm of interpretable machine learning through designing artifacts. We conduct experiments to explore explainability, interpretability as well as technical challenges of creating machine learning models to identify objects that appear similar to humans. Lastly, we conduct a user test to evaluate current state-of-the-art visual explanatory tools in a human setting. From these insights, we discuss the potential future of this field.

Place, publisher, year, edition, pages
Malmö universitet/Teknik och samhälle , 2020. , p. 28
Keywords [en]
machine learning, interpretability, explainability, machine teaching, unknown knowns, convolutional neural networks, generative adversarial networks
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mau:diva-20857Local ID: 32087OAI: oai:DiVA.org:mau-20857DiVA, id: diva2:1480740
Educational program
TS Informationsarkitekt
Supervisors
Examiners
Available from: 2020-10-27 Created: 2020-10-27Bibliographically approved

Open Access in DiVA

fulltext(5635 kB)220 downloads
File information
File name FULLTEXT01.pdfFile size 5635 kBChecksum SHA-512
116d7eccba2cb6ab73b3ca9a02352f961b18d92278269b7fe22b65d1b09c7cfbe5cba8edf6b0150704f3cebf70b06ed1a69bd7b2030cc3822f27306ff8ab1ec8
Type fulltextMimetype application/pdf

By organisation
Faculty of Technology and Society (TS)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 220 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 202 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf